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Chapter 1

Introduction

Why Topos?

Start talking about topos and physics is not an easy ‘charge’. While a logi-
cian/pure mathematician would feel much confident to lecture on topoi and
a theoretical physicist on quantum mechanics, a new ‘ ist’ is needed
here to give a thorough and deep explanation of the meanings involved in the
present work. And this is mainly because of the complexity and the novelty
of the topic.

However a brief1 introduction of what follows will be attempted, by pre-
senting the motivation and the ‘ingredients’ of it.

As shown in the title of the present paper, the main issue (however not
the only) is that of a topos. A topos is a category, endowed with some
further properties. A category is a quite general and abstract mathematical
construction. The branch of mathematics that studies the categories and
their properties is Category theory, a theory that has come to occupy a
central position in mathematics and mathematical physics. Its generality
allows many applications in different fields of science; indeed, they can be
found in textbooks of logic, algebraic topology, physics 2, computer science
and others. Roughly, it is a general mathematical theory of structures and of
systems of structures; its constituents are just ‘objects’ and ‘arrows’ between
them. Furthermore, it serves as an alternative to set theory as a foundation
for mathematics and, like set theory, it is closely related to logic. But, as
will be explained later, it gives rise to logic different than the classical one.

1since I do not regard myself as a new ‘ ist’ !
2to be honest, not quite often
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8 CHAPTER 1. INTRODUCTION

Category theory is both an interesting object of philosophical study3, and a
potentially powerful formal tool for philosophical investigations of concepts
such as space, system, and even truth [22].

Nonetheless, if one wants to describe the present work in one phrase this
would be that: “We intend to reformulate physics by generalizing the math-
ematical background, i.e.,changing the ordinary sets that lie below physics,
with structures other than sets. This can be done by employing topos theory
to express on it the features of a physical theory” This structures are studied
in the context of category theory.

1.1 Motivation

1.1.1 Historical background

Category theory has occurred in the natural route of the abstraction of math-
ematics. Indeed, the evolution of mathematical thought has the tendency to
move on from more “physical mathematics” to less concrete ones. In ancient
times, the mathematics, developed by Greeks, Arabs and Assyrians were just
derived from the necessity of measuring distances and areas; namely geom-
etry. The abstraction of geometrical shapes and ‘flat spaces‘ was not far
beyond than what could be directly seen and measured. Newton’s and Leib-
niz’s Calculus of the 17th century raised the abstraction in a higher level;
extraordinary notions of infinitely small quantities and limits of infinite se-
quences were introduced. Later on, with the development on curved spaces,
logic and number systems, the physical intuition was almost lost; abstract
mathematical models and theories are now put in the centre of the mathe-
matical thought.

Especially in the field of logic, the work of the Dutch mathematicians L.
Brouwer, at the beginning of the 20th century and later on by his student
A. Heyting, introduced the intuitionism in mathematical logic. Intuitionistic
logic contradicts the classical account of truth, which regards a proposition
as being always true or false. This type of logic plays a central role in a topos
representation of physics, as will become clearer later.

Categories were, initially introduced by Eilenberg and Mac Lane, around
1945 in a purely auxiliary fashion. Subsequently, the development of cate-
gory theory was rapid, due to Lawvere’s and numerous mathematicians’ and

3The fact that bears its name from a philosophical term is not an accident.
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logicians’ work.

1.1.2 Advantages of categories

The idea about categories is that, since constructions with similar proper-
ties occur in completely different mathematical fields, we can capture those
properties and drop the specific nature of each construction [7]. Categories
require the least axioms and hence they are regarded as fundamental con-
structions. By its construction a category consists of objects and morphisms
(arrows) between them; hence diagrams, showing the structure and the rela-
tions between objects.

A great advantage of categories is that we can visualize complicated facts
by means of diagrams. Thus a categorical description helps to direct and
organize one’s thought ([7]).

1.1.3 Physical incentive

Nevertheless, the mathematical beauty and elegance of a theory, like category
theory, does not suffices to employ it, for constructing a physical theory.
There are various reasons that, from a physical viewpoint, encourage us to
modify the present framework of theories of physics. The motivations for
doing so can be found in the original work by C. Isham, J. Butterfield and
A. Döring [2, 9, 14].

On one hand, there is the challenge of constructing a quantum theory of
gravity. The discussion about the possibility of achieving a consistent quan-
tum theory of gravity goes much beyond the scope of this paper. However
in a topos framework for physics there seems to be enough space for such a
theory. What is worth noting here, is the that an abandonment of continuous
quantities, in a quantum gravity context, might be needed [11], and this is,
actually, one of the features of topos physics, described here.

On the other hand the conviction, that a restoration of a realist model for
quantum physics is possible, encourages one to go on with a topos description
of physics. As we shall see later, we are able to construct a scheme for
quantum physics, that looks much like the classical one.
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1.2 Ingredients

Before going on a more precise description we give the ‘ingredients’ - math-
ematical tools that we need in order to further our study.

Topos and category theory. It is the main mathematical tool, that
we employ here. The relevant parts of it are presented in the next chapter.

Logic and algebras. Logic is closely related to a topos. Classical and
(specially) intuitionistic logic, and their representations, namely Boolean and
Heyting algebras, are of great importance here. The basics of logic and formal
languages are presented in chapter three.

Propositional calculus. A formal language is closely related to a logic.
Terms as ‘proposition’ and ‘truth values’ play a central role in the present
paper. They are discussed in chapters three, four and five.

Elements of functional analysis such as operator spectra, von Neu-
mann algebras and Gel’fand transforms are needed for the construction of
‘quantum topos’. Most of them are given in the appendix.

Last but not least a great amount of patience and a creative spirit is
needed, in order to combine all those to a successful scheme for physics!
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1.3 The general idea

1.3.1 Language of a system

The present paper focuses on the original work of C. Isham and A. Döring
[2, 3, 4]. It is worth noting that this is the first time that topoi are employed
to physics and the concepts proposed are completely novel. In those papers,
a fundamentally new way of constructing theories of physics is presented. As
said before the main mathematical tool is topos theory. The idea is that to
each physical system S a formal language is associated [2]. Two different
languages are proposed: the propositional language PL(S) and the ‘local’
language L(S). The general claim is that constructing a theory of physics
is equivalent to finding a representation of that language in an appropriate
topos. The topos employed by classical physics is the category of sets - just
a special case of a category, where the objects are just sets and a morphism
is a function between a pair of sets. Other type of theories employ different
topoi.

This procedure might sound strange. But, once one gets familiar to the
new mathematics, fascinating physics start coming out. The ‘universe’ of
topos is different than the ‘universe’ of the ordinary sets. A topos carries
its own world of mathematics; a world which, generally speaking, is not the
same as that of classical mathematics [2]. The (non Boolean) algebra that
can ‘extracted’ out of a topos4 allows us to represent a formal language to a
topos.

1.3.2 Propositions, states and quantity values

In classical physics a scheme that works quite well is the following: the states
of a physical system S live in a state space S, i.e.,a symplectic manifold. The
physical quantities are real valued functions A(s); they map a state s of the
system (a point in the phase space S) to the real line A : s → IR. Then a
proposition about that system (for example “the physical quantity A of the
system has a value that lies in a subspace ∆ of the real line IR”) holds true if
and only if the state s of the system ‘makes’ the physical quantity A obtain
that value. In a more clumsy way we say that if the state s lies in the set

4more accurately: the sub-objects of an object in a topos form a Heyting algebra. All
the necessary formal definitions are given in the following chapters
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A−1(∆), then the proposition A ∈ ∆ is true, or ν(A ∈ ∆) = 1. So a state s
assigns a truth value to the proposition about S.

So everything works fine here; there is a well define phase space S, a
real line IR and real-valued functions A(s). The question now is: “can we
do a similar scheme for quantum physics?” , i.e., define a state space and
real-valued functions from the states to the reals.

Unfortunately Kochen-Specker theorem says a definite no, if the Hilbert
space H has a dimension dimH > 3. i.e.,there cannot be a generalized
quantum mechanical phase space Ω such that an observable A is given as a
mapping

fA : Ω→ IR

(named a hidden variable) (A. Döring, [20]).
Recall that in quantum mechanic the physical quantities are represented

by self-adjoint operators in a Hilbert space H, which cannot regarded as a
phase space. So Kochen-Specker theorem suggests the abandonment of a
naive realistic representation of quantum-physics.

But, now let topos take over! In a topos formulation of quantum physics
a realistic model is possible. As we shall see, in the context of the topos
SetsV(H)op we can define

• a state-object Σ; this is the analogue of a state space and can be naively
described as a collection of many ‘local state spaces’,

• a truth-object T; the analogue of a state and

• an arrow δ̆o(Â) to represent a physical quantity, the analogue of A (see
fig. 1.1)

Hence an analogy to the classical case is achieved5. Last in the place
of IR we now have the object IR�; which now is a special function, named
‘presheaf’, and not the real numbers for the values that physical quantities
obtain! Welcome to the topos world!

5Those ideas are widely discussed in the main part of that work (chapters 5, 6 and 7).
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Figure 1.1: Propositions for classical and quantum physics

Most of the material used in this paper has been taken from the recent
work of C.J.Isham and A. Döring, [2, 3, 4] and also the standard textbook
for topoi, by Goldblatt [1], which I have interpreted and presented here,
according to my own understanding of the subject.
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Chapter 2

Categories and Topoi

A brief account of category theory

2.1 Introducing categories

Category theory is a quite general and abstract discipline of mathematics
which deals with mathematical structures and relationships between them.
A category can initially be conceived as universe of mathematic discourse;
such a universe is determined by specifying a certain kind of objects and kind
of “functions” between objects, that we call ‘arrows’ or ‘morphisms’. As we
shall see the notion of ‘duality’ is present in every property of a category and
plays a central role in its concept.

2.1.1 Objects and arrows

So a category, simply, consists of

1. a collection of objects

2. a collection of morphisms between these objects such that the fol lowing
conditions hold:

• composition condition: given two morphisms f : a → b and g : b → c
with dom g = cod f then there exists the composite map g ◦ f : a→ c

15
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• associative law: given a a
f−→b

g−→c then (h ◦ (g ◦ f)) = ((h ◦ g) ◦ f),
such that the diagram:

a
f //

��

h◦g

��

b

g

��

g◦f

��
d c

h
oo

commutes

• identity law: for any object b in the category there exists a morphism
1b : b → b called identity arrow such that, given any other two mor-
phisms f : a → b and g : b → c we get 1b ◦ f = f and g ◦ 1b = g, such
that the diagram

a
f //

f ��=
==

==
==

= b

1b
��

g

��<
<<

<<
<<

<

b g
// c

commutes.

where ‘dom’ and ‘codom’ denotes the domain and codomain of a morphism,
respectively.

2.1.2 Examples of categories

Category is a fundamental construction; indeed, it requires the least axioms.
Hence it is a very wide and general mathematical construction, such that
there is enough ‘space’ for all many of the different mathematical structures.

Many mathematical theories can be adopted from category theory. If the
features of a theory are the ‘input’ in a category (i.e., objects and arrows),
then the ‘output’ will be the theory itself, or better, a categorial description
of it. For example group theory can be seen as a category, namely the cat-
egory of groups Grp, which has groups as objects and the homomorphisms
between those, as arrows. Similarly, a categorial descirption of linear alge-
bra is captured in the category Vec, which has objects the vector spaces
and arrows between them, the linear transformations in that vector space.
Similarly, we have the category Top of topological spaces and continuous
functions between them. Last, a category that plays special role in our work,
is the category Sets, of ordinary sets as objects and functions between sets
as arrows.
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2.2 The category structure

Since a category is defined there is a lot of algebra someone can do on it.
Many properties, familiar from other disciplines of mathematics, are present
in categories, in a more abstract way. We will give here only the most
important, for what follows. A more thorough analysis can be found in the
(classical) textbook for categories [1]. Most of the definitions in that section
comes form that book.

2.2.1 Some definitions

A monic arrow f : a→ b between two objects, a and b, in a category,
is an arrow such that for any parallel pair g, h : c⇒ a of arrows, the equality
f ◦ g = f ◦ h implies that g = h. Usually, a monic arrow is denoted by
f : a� b.

An epic arrow f : a→ b between two objects, a and b, in a category,
is an arrow such that for any parallel pair g, h : b⇒ a of arrows, the equality
g ◦ f = h ◦ f implies that g = h. Usually, an epic arrow is denoted by
f : a� b.

An initial object in a category is an object 0, if for every object a in
the category, there is one and only one arrow from 0 to a.

A terminal object in a category is an object 1 if for every object a in
the category, there is one and only one arrow from a to 1.

An iso arrow f : a→ b is an arrow f between two objects, a and b, in
a category, if there is an arrow g : b→ a such that g ◦ f = 1a and f ◦ g = 1b.

Isomorphic objects denoted a ∼= b are said two objects, a and b, if
there is an arrow f : a→ b that is iso in the category, i.e.,f : a ∼= b.

A global element of an object A, in a category, is defined to be an
arrow 1 → A. The collection of all global elements of A is denoted ΓA. A
global element is not necessarily itself an object in the category.
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2.2.2 The pullback

A pullback of a pair a
f−→c

g←−b of arrows with a common codomain is a
limit, in our category, for the diagram

b

g

��a
f
//

A cone for this diagram consists of three arrows f ′, g′, h such that

d
h

��>
>>

>>
>>
f ′ //

g′

��

b

g

��
a

f
// c

commutes. But this requires that h = g ◦ f ′ = f ◦ g′, so we may simply
say that a cone is a pair

a
g′←−d f ′−→b

of arrows, such that the “square”

d
f ′ //

g′

��

b

g

��
a

f
// c

commutes, i.e.,f ◦ g′ = g ◦ f ′. Thus,

Definition 1 a pullback of the pair a
f−→c

g←−b in a category, is a pair of
arrows a

g′←−d f ′−→b such that

1. f ◦ g′ = g ◦ f ′, and

2. whenever a
h←−e j−→b are such that f ◦ h− g ◦ j, then
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e
j

!!
h

��

k

��
d

g′

��

f ′ // b

g

��
a

f
// c

there is exactly one arrow k : e→ d such that h = g′ ◦ k and j = f ′ ◦ k.
In other words when h and j are such that the outer “square” of the
above diagram commutes, then there is only one way to fill in the arrow
(k) to make the whole diagram commutes.

2.2.3 Sub-object

Definition 2 A sub-object of an object d of a category, is a monic arrow
f : a� b with codomain d.

The collection Sub(d), of all sub-objects of an object d is defined:

Sub(d) = {[f ]} : f is a monic arrow with cod f = d}

where [f ] is the equivalence class [f ] = {g : f ' g}.

2.2.4 Sub-object classifier

Definition 3 If b is a category with a terminal object 1, the sub-object classi-
fier for b is an object ø of b together with an arrow, named true, true : 1→ Ω
that satisfies the following axiom.

Ω − axiom. For each monic f : a� b there is one and only one arrow
in b such that

a
f //

!
��

d

χf

��
1

true
// Ω

is a pullback square
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The arrow ‘!’ denotes a unique arrow in the category. The arrow χf is
called the characteristic arrow, or character of the monic (i.e.,sub-object of
d). The sub-object classifier, when it exists in b, is unique, up to isomorphism
(i.e.,there is an iso arrow between Ω and an object b).

2.2.5 Power object

A category B with products is said to have power objects if to each B-object
α there are B-objects P(α) and εα, and a monic ε : εα � P(α) × α, such
that for any B-object b, and “relation”, r: R � b × α there is exactly one
B-arrow fr : b� P(α) for which there is a pullback in B of the form

R
r //

��

b× a
fr×ida
��

εa ε
// P(α)× α

2.3 Functors and Presheaves

Functions between categories

We have defined categories as collections of objects and arrows between them.
This construction is quite general and abstract so there is ‘space’ for many
applications of it, as said before. A natural question that comes up out
of categories is if (and how) one can move from one category to the other.
Keeping in mind that in category theory it is the morphisms, rather than the
objects, that have the primary role we can take a more global viewpoint and
consider categories themselves as structured objects. Now, if we define an
arrow between those objects we are done! It turns out that we can construct
such morphisms, but with some restrictions, regarding the arrows of the
starting and the resulting category. The “morphisms” between them, that
preserve their structure, are called functors. To be more precise we should
move to the formal definition of a functor:

Definition 4 A covariant functor F from a category A to a category B
is a function that assigns to each A-object A a B-object FA, and to each
A-morphism A

f−→A′ a B-morphism FA

F(f)−→FA′ in such a way that
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1. F preserves composition; i.e.,

F(f ◦ g) = F(f) ◦ F(g),

for two morphisms g : Ã → A, f : A → A′, whenever f◦g is defined,
and

2. F preserves identity morphisms; i.e., FidA = idFA for each A-object A.

This definition comes from Adàmek, Herrlich and Strecker [7], but is more
or less the same in all textbooks.

Definition 5 A contravariant functor X from a category A to a category
B is a function that assigns to each A-object A a B-object XA, and to each
A-morphism A

f−→A′ a B-morphism XA′
X(f)−→XA in such a way that

1. X inverses composition; i.e.,

X(f ◦ g) = X(g) ◦X(f),

for two morphisms g : Ã → A, f : A → A′, whenever f◦g is defined,
and

2. X preserves identity morphisms; i.e., XidA = idXA for each A-object
A.

Definition 6 A presheaf X on a category C is a covariant functor X :
Cop → Sets. Alternatively, it is a contravariant functor X : C → Sets.

Roughly speaking a presheaf is a set which varies from one context to
another. A definition and a discussion of a presheaf in a poset, can be found
at the appendix.
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A
F //

f

��

FA

F (f)
��

A′
F
// FA′

C F−→D

A Functor maps a category C to another category D, preserving the morphism
order.

A
X // XA

X(f)

��
A′

X
//

f

OO

XA′

Cop
X−→Sets

A Presheaf maps a category C to the category Sets of sets

A more ‘complete’ diagram, showing a covariant functor from a category
C, with objects {A,B,C,D . . .} and arrows {f, g, h, k . . .} to a category D
with objects {FA.FB, FC , FD . . . } and arrows {F (f), F (g), F (h), F (k) . . .} is
the next one

B
h

vvmmmmmmmmmmmmmmmmm

?�
�O
�O
�O

g // C

vvmmmmmmmmmmmmmmmmm

?�
�O
�O
�O

A

F
?�
�O
�O
�O

f
// D

F
?�
�O
�O
�O

FB
F (g) //

vvmmmmmmmmmmmmmmmm FC

F (k)
vvmmmmmmmmmmmmmmmm

FA F (f)
// FD

where the upper square is the category C, the lower one is the category
D and the curly arrows depict the covariant functor F .
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2.4 Definition of topos

Roughly speaking a topos is category that behaves much like Sets [2] or,
sometimes, it is modeled after the properties of the Sets. Its notion captures
some of the aspects that are defined in sets, such as the union and join
(products and co-products).

Formally it is defined as follows.

Definition 7 An elementary topos is a category E such that

1. E is finitely complete,

2. E is finitely co-complete,

3. E has exponentiation,

4. E has a sub-object classifier.

An alternative definition can be given, using power objects.
A category E is a topos if and only if E is finitely complete and has power

objects. ([1], p. 106)
Unfortunately the lack of space does not allow us to present what of

(co-)completeness and exponentiation are. The reader is prompted to [1], p.
69-71.
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Chapter 3

Logic, Algebras and Topoi

Giving a brief explanation of what a logic is, is not an easy and perhaps not
useful matter 1. Generally speaking, a logic is any set of rules for forming
new sentences from given ones (the logic’s axiomatics) together with rules
for assigning truth values to them (the logic’s semantics). Roughly, a logic
is a set of abstract ‘ideas’, which can be realized (more concretely) when
represented in an algebra. We will shortly describe the two main types of
logic - classical and intuitionistic - , give representations of them and show
the connection to topos theory.

3.1 Classical Logic

Classical logic is computationally the simplest of all the major logics. It is ,
maybe, the most usual and well-studied one; hence its name.The semantics
of classical propositional logic can be described just in terms of simple op-
erations of 0’s and 1’s (usually captured by tables). Formally, a system for
classical logic, can be defined as an axiom system whose axioms are given in
the first part of appendix. But be before that, we have to go on with the
appropriate description of the logical operations. Most of what follows, in
that section, comes from [1], ch. 6.

1quote by E.J. Lemmon, author of numerous books in logic.
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3.1.1 Simple and compound propositions

A proposition or (sentence or statement) is simply an expression that is either
true or false. Thus:

“1 + 2 = 3”

“34 minus 3 equals 4”

“London is in France”

are examples of propositions, while

“Is 3 + 0 the square root of 9?”

and
“Do not read that paper!”

do not count as propositions.
So a proposition is an entity that can be assigned one of the two truth-

values 0 and 1, i.e.,the truth values lie in the set 2 = {0, 1}. We assign the
value 1 to a proposition if it is true and the value 0 if it is false.

The logical operations “and”, “or”, “not” serve as logical connectives in
constructing compound sentences, out of simple ones. Let a, b, c be sentences.
Then “a and b”, “a or b”, “ ∼ a” are also sentences. We use the symbols
“a ∧ b”, “a ∨ b”, “ ∼ a” for these operations, which are said to be obtained
by conjuction, disjunction and negation, respectively.

3.1.2 Truth values of propositions

We can assign truth values to compound propositions, made using the con-
nectives ∧,∨,∼, from the truth values of its components.

• Negation ∼
The sentence ∼ a is true (assigned 1) when the sentence a is false and
false (0) when a is true. Alternatively we can regard it as determining
a function: ¬ : 2 → 2 defined by ¬1 = 0, ¬0 = 1. It is called the
negation truth-function.

• Conjunction
⋂

The truth-value of the compound proposition a ∧ b is true if and only
if both a and b are true. The conjuction truth− function, from pairs
of truth-values to truth-values: ∩ : 2 × 2 → 2 is define by 1 ∩ 1 =
1, 0 ∩ 1 = 1 ∩ 0 = 0 ∩ 0 = 0
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• Disjunction
⋃

A compound proposition a ∨ b is true if and only if either the proposi-
tions a or b or both are true. The disjuction truth − function, from
pairs of truth-values to truth-values: ∪ : 2 × 2 → 2 is defined by
1 ∩ 1 = 0 ∩ 1 = 1 ∩ 0 = 1, 0 ∩ 0 = 0

• Implication ⇒
The implication connective allows us to form a sentence “a implies b”,
symbolised “a ⊃ b”. The proposition “a ⊃ b” is false if a is true
while b is false (we cannot derive something false from something true!).
In all other cases a ⊃ b is true. The implication truth − function
⇒: 2× 2→ 2 has 1⇒ 0 = 0, 1⇒ 1 = 0⇒ 1 = 0⇒ 0 = 1

We the logic operations and truth functions we can assign truth-values
to any compound proposition, just by applying successively the rules given
above. There numerous properties that classical logic has. A thorough pre-
sentation of them is beyond our scope. The reader is prompted to [1, 8, 22].

3.2 Non-classical logic

Broadly speaking the classical logic is the ‘classical’ way we apprehend the
world in our daily lives. It is natural to think that the proposition

either It will rain tomorrow or it will not

is a tautology, i.e.,something always valid, in the context of the language
used (here classical). However there are several systems of logic where the
above expression does not hold true.

With the term non-classical logic we refer to a wide family of logics that
differ from the classical one, in various aspects. The most usual non-classical
logic are characterized by the lack of one or more of the following properties:
the law of the excluded middle a ∨ ¬a = 1, the law of non-contradiction
a ∧ ¬a = 0, the commutativity of conjunction a ∧ b = b ∧ a and others, (a, b
are propositions).

As we shall see, a particular non-classical logic, the intuitionistic or con-
structivist logic, plays an important role in the present work.
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3.3 Formal Language

A Formal Language, PL is normally given by an alphabet together with some
formation rules2. The idea of a formal language is directly connected to that
of a logic; a language follows the rules of a particular logic, and allows us to
extend the study of the calculus of propositions and truth values.

Ingredients of PL

Symbols

1. infinite list of symbols π0, π1, π2 . . ., called propositional variables (or
sentence letters)

2. symbols ∼,∧,∨,⊃

3. bracket symbols ),(

As we shall in the following chapter, a symbol of the language PL(S),
for a physical system S, is simply the proposition “A ε ∆” := π, about that
system.

Formation rules for PL sentences

1. Each sentence letter πi is a sentence

2. If a is a sentence so is ∼a

3. If α and β are sentences then so are (α ∧ β), (α ∨ β), (α ⊃ β)

Here the letters α, β represent generic sentences, which well could be a single
(language-) letter or something more complicated like ((π1 ∨ π2) ⊃ (π2∧ ∼
π2)). The collection of sentence of letters is denoted Φ0 while Φ stands for
the set of all sentences:

Φ0 = {π0, π1, π2 . . .}
2Sometimes a language over an alphabet is defined as set of strings made from the

symbols in the alphabet. A string of length n on an alphabet l of m characters is an
arrangement (grouping) of n not necessarily distinct symbols from l. There are mn such
distinct strings. For example, the strings of length n=3 on the alphabet l={1,2} of two
characters are {1,1,1}, {1,1,2},{1,2,1}, {1,2,2}, {2,1,1}, {2,1,2}, {2,2,1}, and {2,2,2}.
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Φ = {α : α is a PL− sentence}

To develop a theory of meaning or semantics, for PL we use the truth-
functions V.

By value-assignment V:Φ0 → 2 we mean any function from Φ to {0,1}≡2.
Such a V : Φ0 → 2 assigns a truth value V(πi) to each sentence let-
ter and so provides an “interpretation” to the members of Φ0.

The interpretation can be systematically extended to all sentences, so that
V extends to a function from Φ to 2. This is done by induction over the
formation rules through successive applications of the rules:

1. V (∼ a) = ¬V (a)

2. V (a ∧ b) = V (a) ∩ V (b)

3. V (a ∨ b) = V (a) ∪ V (b)

4. V (a ⊃ b) = V (a)⇒ V (b)

In this way any V : Φ0 → 2 is lifted in a unique way to become a function
V : Φ→ 2.

A sentence a ∈ Φ is said to be a tautology if holds true for every assign-
ment, i.e., for every value assignment V , V (a) = 1.

3.4 Axiom systems

3.4.1 Axiom system for classical logic

Apart from semantics, axiomatics is a needed part in constructing a language
PL. These are concerned with deriving new sentences from given ones. More
precisely we define an axiom system as:

1. a collection of sentences, called axioms of the system

2. a collection of rules of inference which prescribe operations to be per-
formed on sentences, to derive new ones.

A theorem is a sentence that is derivable from the axioms. The classically
valid sentences are the ones whose theorems are precisely the tautologies
of PL. The classically valid sentences are not obtained by a unique axiom
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system; indeed we can use several different axiom systems to deduce the
theorems of PL.

An axiom system, commonly used is called CL. All of its axioms can be
derived from twelve forms that are listed in the appendix. The last axiom

a ∨ ¬a = 1 (3.1)

will be of particular interest.

It contains only one rule, the
rule of detachment: from the sentences a and a ⊃ b the sentence b can be
derived. (sometimes called ‘modus ponens’).

3.4.2 Axiom system for intuitionistic logic

We introduced non-classical logic before. Now we are ready to give a more
concrete description of the intuitionistic logic, by defining an axiom system,
called IL, for it. The system is based on the same language PL. Its sole rule
is also the rule of detachment and its axioms are almost of the same form as
of the classical logic; there is one single form of CL that is not an axiom in
IL. This is the axiom 3.1, which is called the law of the excluded middle.

However, there are more CL tautologies that are not IL-theorems. The
forms

a ∨ ¬a and ¬¬a⇒ a,

are not theorems of IL, while

a⇒ ¬¬a,

is a IL-theorem.

Intuitionistic logic is a part of classical logic, in the sense that all formulas
provable in intuitionistic logic are also provable in classical logic. Although,
some basic theorems of classical logic do not hold in intuitionistic logic.

To summarize, we write:

classical logic : a⇔ ¬¬a
intuitionistic logic : a⇒ ¬¬a
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3.5 Representation of a language

Logic and languages, studied so far, are quite abstract constructions. But not
the only ones! In various disciplines of mathematics, that study abstract con-
structions, there are propositions, the so-called representation theorems, that
establish an equivalence between the model of a certain abstract structure
and a particular list of concrete models ([1], p. 26).

Following that idea, we can find such ‘concrete’ models to represent on
them a particular logic; in our case classical or intuitionistic.

A Boolean algebra is a canonical structure in which we can represent a
formal language, following the rules of classical logic.

A Heyting algebra is canonical structure in which we can represent a
formal language, following the rules of intuitionistic logic.

The definitions of a Heyting and Boolean algebras are a bit more technical
(all the necessary definitions can be found in the appendix, 9.2.2). They are
both defined as distributive lattices. The difference lies in the complement; a
Boolean lattice is always complemented, while the lattice of a Heyting algebra
is pseudocomplemented. This reflects the non validity of the statement a∨¬a
3.1.

3.5.1 A representation of Boolean algebra

Since 1936 and due to “Stone’s representation theorem for Boolean algebras”,
it is known that a connection between Boolean algebra and the subsets of a set
can be established; the operations of classical logic can easily be represented
by set-theoretical operations. If A,B are two sets, let the operation A ∧ B
be represented by the meet A ∩B of the two sets, A ∨B by the join A ∪B,
¬A by the complement AC and the implication A⇒ B by the set inclusion
A ⊂ B. And that’s it! The set-theoretical operations reproduce exactly the
axioms of the classical logic. For example, the Boolean-logical assertion that
a statement a and its negation ¬a cannot both be true,

a ∧ (¬a) = 0,
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parallels the set-theoretical assertion that a subset A and its complement AC

have empty intersection,

A ∩ (AC) = ∅.

So, finding a representation to a Boolean algebra is equivalent to finding a
representation to the subsets of set3. Later on we will see the connection to
classical physics.

For example the set 2, which is the set of the truth values, in a classical
logic, together with truth functions ¬,∩,∪ forms a Boolean Algebra.

3.5.2 Boolean vs Heyting algebra

A similar representation of a Heyting algebra is not straightforward and easy
to visualize. However we can give an example, pointing out the difference
between operations in Boolean and Heyting algebras.

Let X be a measurable space4 and a⊆ X a subset of X. In the case of
Boolean algebra the logical negation ¬a of the proposition a is represented
by the (ordinary set-theoretical) complement X /a.

Now let X be a topological space5. In the case of a representation of
a Heyting algebra the set a⊆ X must be open. The logical negation ¬a is
defined to be the interior of the complement X /a. Therefore the difference
between ¬a in the the two cases is just the ‘thin’ boundary of X /a.

3.6 Algebra of the sub-objects and represen-

tation in a Topos τ

Now how all these are connected to a topos? In fact topos theory, since its
foundations, served as novel and successful mathematical tool of studying
logic. Every topos carries its own logic; an ‘internal’ logic. Additionally it
can be shown that the sub-objects of an object in a topos form an algebra.
And since, in the present work, we are looking for representations of a formal
language in an algebra, we are justified to represent a language to a topos.
A deep analysis of the algebra that sub-objects of an object in a topos, form

3Here, by sets, we refer to genuine sets and not sets of more complicated entities, as
sieves or functionals, as we shall see later.

4A set considered together with the σ-algebra on the set
5A set X together with a collection of open subsets T.
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cannot be given here (there is a whole chapter devoted to that, see [1], ch.
7). However a general result that is of great interest is that in any topos
the collection of the sub-objects of any object d, together with an inclusion
relation forms a poset (a partially ordered set). If this poset is a Boolean
Algebra then our topos is called Boolean. However, in the general case
The set of all sub-objects of an object in a topos is a Heyting
Algebra.

As said before, we can associate the rules of classical logic with the opera-
tions on subsets of a set. This idea can be extended in any topos; but it turns
out that the logic to be represented is not classical anymore. The algebra of
the sub-objects of an object, in a general topos, is a Heyting algebra and the
logic represented is the intuitionistic.

Truth function as arrows

To represent a language in a topos we must use the sub-objects of an object
in that topos as the ‘letters’ of our language. Then what’s left is to define,
are the ‘formation rules’. To do so we use the only “interaction” between
(sub-)objects that we have; Arrows! Indeed, in the classical case, each of the
truth-functions has codomain 2 and so is the characteristic function6 of some
subset of its domain. Since the characteristic functions are special arrows in
a topos we can succeed an arrows-only definition of the truth functions.
In other words we are looking for an association of the logic connectives
∧,∨,∼,⊃ to the arrows of our topos.

These can be found in an explicit form in [1], p. 136-140.
In the topos of sets it is easy to see how the logic operations are defined

on characteristic functions. The following theorem establishes a relation
between set operations and truth functions.

Theorem 1 If A and B are subsets of D, with characteristic functions χA :
D → 2, χB : D → 2 then

1. χ¬A = ¬ ◦ χA

2. χA∩B = χA ∩ χB
6The characteristic function for a subset A of a set X is the function

χA(x) =

{
1, if x ∈ A,
0, otherwise
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3. χA∪B = χA ∪ χB

The proof of that is quite easy and can be found in Goldblatt, [1], p. 146.
Furthermore, one can defines truth arrows in a topos and go on with the
semantics on it, define operations (intersection, union, complement) on the
collection of sub-objects Sub(d) of an object d. However we will not go that
far. We just keep the result that “the set of all sub-objects of an object in
a topos is a Heyting Algebra” and so a topos can be used for representing a
formal language on it, for our further study.

After this brief introduction we are ready to see how can topos theory
serve as tool in constructing physical theories.



Chapter 4

Topos theory as a framework
for theories of physics

4.1 Introduction

So far we have introduced some abstract constructions; categories. topoi and
the related algebras on them. But how can these be used to describe physical
systems?

As mentioned earlier, the idea is that using topoi we can achieve a gen-
eralization of the ordinary set theory that lies underneath today’s physical
theories. Roughly speaking we substitute the objects ‘sets’ in our topos with
objects other than ‘sets’. Then we are looking for a physical representation
of a formal language on it. But before going further, let’s stick for a while in
the logic of the classical physics; see how a familiar description of a classical
system is seen from a linguistic aspect and how the whole scheme can be
nicely captured by a topos.

Property of the System. The reason why we need a physical theory is
that it specifies how a physical quantity (i.e.,observable) acquires a value.
The scheme that can be used is that the physical quantity is actually a
‘mapping’ from the state space (where the state of system lives) to the value
space.

state space
physical

quantity
// quantity-value space

35
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The value of the physical quantity is a ‘property of the system’ and hence
must be meaningful and representable in the theory. In our case the physical
quantities are represented by arrows whose domain is the state space S and
codomain the value space. In the classical case S is a set, but this is not true
for theories like quantum physics.

All these can be realized in the topos language.

• The state space and quantity-value space are specific objects of the
topos, called ‘state object’ Σ (topos analogue of the classical state-
space) and ‘quantity-value object’ R, respectively

• Physical quantities are represented by morphisms in the topos

• Propositions1 are represented by sub-objects of the state object Σ

Σ
physical

quantity
// R

Now in the case of Classical Physics the topos is just the category of sets,
Sets where:

• the state space S is a set

• physical quantities are represented by real-valued functions Ă : S → IR

• propositions are represented by subsets of S

Now, since we can associate the propositions about a system with the
subsets (or sub-objects of an object in a topos, in general) we expect them
to form an algebra. We have already pointed that the subsets of sets, form
a Boolean algebra (alternatively, the topos Sets is Boolean). However for
a generic topos, as we shall see, this is not the case. We see that from our
general construction one can easily deduce the classical system and logic, just
by using Sets as the topos. The topos representation of physics seems to
be a promising way of translating physical theories! What is of importance
here is that the value object Rφ need not be the set of real or even complex
numbers. Since there is no prima facie2 reason for requiring the value space

1also called ‘statement’, in the context of a formal language
2based on the first impression; accepted as correct until proved otherwise
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to be continuum, we will not restrict ourselves to the case Rφ ≡ IR. As we
shall see this will be a fruitful assumption, or better, a fruitful rejection of a
(previous) assumption!

4.2 Constructing Physics in a topos

Our general task is to represent a physical system (or some features of it) by
structures in a suitable topos. The claim is that for a given physical system,
described by a specific theory-type (for example classical physics or quantum
physics) there is a specific topos τφ(S) related, where S is associated with the
system and the subscript φ with the theory-type. That topos construction
can captures the features of the physical system S and, as we shall see,
disclose ‘new’ ones.

We have seen so far that each topos carries its own logic and this allows
us to link it with a formal language. More accurately if we find a language,
appropriate for a system described by a theory-type, we can represent it in
a topos. Deriving a physical theory is equivalent to finding a representation
of a language in a topos. As we shall later see for the theory-type ‘quantum
physics’ we find an appropriate language, represent it in a (Heyting) algebra
and hence to the sub-objects of a (specific) object in the topos, that obey
this algebra.

4.2.1 The Propositional Language PL(S)

To start dealing with languages in topoi, let’s take the collection of proposi-
tions. The resulting set PL(S)0 of all strings of the form “Aε∆”, where A is
some physical quantity of the system S and ∆ is a (Borel) subset of the real
line IR. Now this set can be ‘promoted’ to a language if equipped with some
rules. To do so we add a new set of symbols (¬,∧,∨,⇒) and then we define
a sentence inductively, in accordance to paragraph 3.3:

1. Each primitive proposition “A ε ∆” in PL(S)0 is a sentence

2. If α is a sentence then so is ¬α

3. If α and β are sentences then so are α ∧ β, α ∨ β and α⇒ β
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The collection of all sentences in PL(S) forms an elementary formal lan-
guage. Notice that in this language the quantifiers ‘∀’ and ‘∃’ are not con-
tained. Hence we say that PL(S) is a propositional language only.

4.2.2 Representations of the language

The rules defined above are not concrete at all; they have no explicit meaning.
If we want the abstract symbols ¬,∧,∨,⇒ yield an actual meaning we have
to map them in a less abstract structure. Following the ideas of 3.5 we
proceed with a representation of the language in an algebra. In the most
general case this algebra is a Heyting algebra H.

A representation π maps each of the primitive propositions, α
in PL(S)0 to an element π(α) of some Heyting algebra.

π : PL(S)→ H

Since different systems can have the same language, some of the features
of a theory might lie in the language (linguistic precursors) while others
might exist only in the representation of it. The question, when representing
a language to construct a theory of physics, is how much information we
should encompass in the language. We shall return to that later.

From general topos theory we know that the sub-objects of an object
in a topos is a Heyting algebra (or Boolean as a special case). This leads
us to look for a representation of a language in a topos. In the context of
the chosen language what matters is the ability of writing propositions that
obtain a truth value. This can be done when ‘states’ are defined, within the
representation of the language. States yield a truth value for the primitive
propositions in PL(S). In theory-type ‘classical physics’ the topos is always
Sets for any physical system. In such a case the algebra that sub-objects
(i.e., subsets) of objects (i.e., sets) of Sets form, is the ordinary Boolean
algebra. This means that the propositions in the language, that is to be
represented in Sets, will either be true or false. As we will see this is not
happening in a quantum topos, which of course is not Sets and the algebra
is not Boolean.

A ‘concrete’ proposition To make these clearer we will give a (baby) ex-
ample. We regard as our system S a point-particle moving in one dimension.
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The Hamiltonian describing S is

H =
p2

2m
+ V (x) (4.1)

The state space is the phase space IR2n = IRn× IRn, which is a symplectic
manifold3 (M,ω). In the one-dimensional case, of course, we have IR2n ≡ IR2.
The position q and momentum p of the particle, lie in (M,ω).

A physical quantity, energy for example, is represented by the real-valued
function H : S → IR. Now what can we say about that system? Make a
proposition about it! For example the form

H(p, q) = %

means (proposes) that the energy of S has a value in %. where p, q ∈ S
and % ∈ ∆. So, and in accordance to our prior knowledge of the classical
Hamiltonian systems, H maps the pair (p, q) to a real number, which is the
value of the energy. Hence the physical quantity energy is represented by a
real-valued function H.

A proposition “H ε ∆” about the system is represented by the subset of
states of the phase space for which the physical quantity lies in the subset ∆
of the reals;

πcl(H ε ∆) = H−1(∆) ⊆ IR2

(where we droped the hats “˘” )
Since the representation takes place in Sets the logic of the propositional

calculus in theory-type ‘Classical Physics’ is represented in a Boolean Alge-
bra.

After that, we are ready to see in detail how different physical theories
are connected to a language representable in a topos.

3a symplectic manifold is a pair (M, ω), where M is a manifold and ω is a symplectic
form
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Chapter 5

Representing in a Topos

5.1 From representations to physical theories

As mentioned before, our general claim is that a physical theory is equivalent
to finding a representation of a typed formal language, that is attached to
the system, to an appropriate topos.

But before going further to see how classical and quantum physics arise
from topoi, lets give some examples in order to emphasize the underlying
connection between sets, topoi, languages and logic.

In chapter 4 we dealt with propositions, about a system in classical
physics, of the form ‘Aε∆’, which state that the value of the physical quantity
A lies in the subset ∆ of the real line IR. The propositions are represented
by subsets Ă−1(∆) ⊆ S, where Ă is a real- valued function1 associated with
the physical quantity A. Actually any proposition P about the system is rep-
resented by an associated subset SP of S and conversely every subset of S
represents a proposition P. We will, shortly, see the analogue in the case of
quantum physics.

The logical calculus arises naturally when someone considers the propo-
sition “P and Q” or “P or Q”.

Propositions P and Q are now represented by the subsets SP and SQ
respectively. Let’s form the ‘composite’ proposition “P and Q”. We note
that this proposition is true if and only if both P and Q are true. This
means that the states that are represented by P and Q lie in both sets, i.e.
in the set-theoretical intersection of SP and SQ. Hence S(P and Q) = SP ∩ SQ

1To be more precise, we are interested in measurable functions and Borel subsets
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and

“P and Q” is represented by SP ∩ SQ
Similarly we find that

“P or Q” is represented by SP ∪ SQ
and

“not P” is represented by S/SP
The composite proposition “P or Q” is true if either or both of P, Q are

true, i.e. all the states that lie in the set-theoretical union of SP and SQ
represent the the logical disjunction “P or Q”. Last, the logical negation of
the proposition P, “not P” is represented by all those points in S that do not
lie in SP . This is, of course, the set-theoretic complement S/SP

This correspondence of the logical calculus of propositions about a physi-
cal system, on one hand and the algebra of subsets of the state space on the
other, comes naturally and is exactly what we have introduced in the third
chapter and defined in the previous one, as a representation, i.e.,a map from
a language to an algebra2.

So Sets, the category of sets, reveals a logic on its own and it is this logic
that dictates the behavior of propositions about a physical system, which is
attached to that category.

Extending that idea, any topos carries its own logic and is appropriate
for representing on its sub-objects some language. But now we do not have
the restriction of Boolean algebra, as we are dealing with topos different that
Sets So a representation takes place in a topos and in that way, a formal
language can be attached to each physical system.

To be more concrete we will start examining the representations first of
PL(S) and then of that of L(S) languages, in the case of both classical and
quantum physics. .

5.2 The language PL(S)

In chapter 4 we introduced the typed language PL(S). A representation
of that language, in general, takes place in a non-Boolean topos. Different

2to be more precise this is the special case where we have classical rules of logic mapped
into subsets, which obey a Boolean algebra
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theory-types and different physical systems as well, invoke different represen-
tation in different topoi.

5.2.1 PL(S) in classical physics

In classical physics the topos involved is Sets, the category of sets and
functions between sets. We recall that in that case:
• The state-space is symplectic (or Poisson) manifold S

• A physical quantity A is represented by real-valued functions Ă : S →
IR

• The representation πcl maps the primitive propositions “A ε∆” to the
subset of S given by

πcl(A ε ∆) := {s ∈ S|Ă(s) ∈ ∆} = Ă−1(∆) (5.1)

An extension of the representation to all sentences of PL(S) is possible.
Each state s assigns to each primitive proposition “A ε ∆” a truth value

ν(A ε ∆; s), which lies in the set {false, true} (which we identify as {0,1})
and is defined as

ν(A ε ∆; s) :=

{
1 if Ă(s) ∈ ∆
0 if otherwise

(5.2)

We see that the truth values, in this case, belong to the set {0,1}, which
‘happens’ to be the set of global elements ΓΩ of the sub-object classifier Ω.
This is not an accident, since we have chosen the topos Sets, where always
Ω={0,1}. Hence H is equal to the Boolean Algebra of all Borel subsets of S.

For example we regard, again the Hamiltonian H = p2

2m
+V (x) for the

system of the example 4.1. The proposition about S

‘The energy H of the system is 5’ (5.3)

of course does not hold true for all the states (p, q) of the systems, since we
know that H depends on momentum p and position q. So there is a specific
set S̃ of pairs (p, q) for which 5.3 is true, i.e.,the equation H(p, q) = 5 is sat-
isfied for all p,q in S̃. The latter is the subset of the state space (symplectic
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Figure 5.1: A truth value ν is assigned to each proposition ‘A ε ∆’ for each
state of the state space

manifold), that the representation πcl maps to (see 5.1)

Note that we said nothing about the the form of V (x). The details of
the Hamiltonian are not incorporated in the language, and hence different
systems (with different potentials) can have the same language. In other
words the language PL(S) is independent of V (x). This is not true for the
propositions “H ε ∆”; they depend on the details of the Hamiltonian. This
is obvious in our example, where the value of the physical quantity ‘energy’
of the system depends on the potential V (x).

5.2.2 PL(S) in quantum physics

In Quantum physics the situation is a quite different. A physical quantity A
is represented by a self-adjoint operator Â on a Hilbert space H.

The proposition “the physical quantity A has a value in the Borel set
∆” is now represented by a projection operator3 Ê[A ∈ ∆] := P̂ , i.e.,a
self-adjoint operator from H to H, such that P̂ 2 = P̂ .

3It is the spectral theorem that guarantees that to each Borel subset ∆ of the real line
IR there exists a projection Ê[A ∈ ∆]. This projection is interpreted as a proposition.
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Hence we have:

π(A ε ∆) := Ê[A ∈ ∆] (5.4)

Now the set of all projection operators P(H) in H has its own logic; the
‘quantum logic’ of the Hilbert space H. A more thorough study of the quan-
tum logic of projection operator follows in the next chapter. For the moment
it suffices to say that, unlike the distributive lattice of the Heyting alge-
bra (where we represent our language) the logic of the lattice of operators
P̂ ∈ P(H) turns to be non-distributive.

The quantum logic is incompatible with the intuitionistic logic of PL(S)
and hence the procedure, followed in the classical case, fails completely. As a
consequence we have to modify and ‘enrich’ our scheme in order to construct
a viable representation of quantum physics in a topos. As long as we intend to
restore a realist interpretation of quantum physics, a different approach, and
new mathematical tools are needed. We will present these in the following
chapter.

5.3 The local language L(S): A higher-order

language

We now introduce and study a language different than PL(S). The language
presented here, called ‘local’ language L(S) (Bell ([12]), is associated, in a
unique way, with each physical system S.

The motivation, as mentioned before, is to construct a topos other than
Sets, where descriptions of theories, such as quantum theory, could be viable.
To do so, we no longer restrict ourselves to the case where the value space
IR is fixed, as in classical physics4. The value- (or target)-object RS is now
topos-dependent, and therefore part of the representation.

To construct a system-dependent quantity-value object we add a symbol
R in the language, to act as a linguistic precursor of RS . In the same way
we let the state-object Σ be system-dependent and hence we add one more
symbol ‘Σ’ to act as the linguistic precursor in the language. But then follows
that symbols ‘A: Σ → Ω’ should be added too, in order to be represented

4In fact this motivation comes from Kochen-Specker theorem. In general, it demon-
strates that, in a Hilbert spaceH, with dimH>2, it is impossible to ascribe to an individual
quantum system a definite value for each of a set of observables not all of which necessarily
commute.
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by an arrow in the topos. Finally, we need a symbol ‘Ω’ as the linguistic
precursor of the sub-object classifier in the topos. We will now, formally,
develop the language L(S).

The symbols of L(S). We will present some (the more important ones)
from the minimal set of symbols that we need for elementary physics (the
whole list of symbols can be found in [3], p. 17 and onwards).

1. (a) Basic type symbols : 1, Ω, Σ, R. The last two are known as ground
type symbols. They are the linguistic precursors of the state-
object and the quantity-value object, respectively.

(b) If T is a type symbol then so is PT.

2. For each type symbol, T, there is associated a countable set of variables
of type T

3. To each pair (T1, T2) of type symbols there is associated a set F(L(S))(T1, T2)
of function symbols. Such a symbol, A, is said to have signature
T1 → T2; this is indicated by writing A: T1 → T2. Some of these sets
of functions symbols may be empty. However, particular importance is
attached to the set, F(L(S))(Σ,R), of function symbols A: Σ→ R, and
we assume this set is non-empty.

The only parts of our language that depend on the system are the function
symbols A: Σ→ R and F(L(S))(T1, T2); the ‘physical quantities’ of the system.

Note that, as in the case of the propositional language PL(S), different
systems can have the same local language L(S).

The terms of L. There several terms in L(S). Again we will not enumerate
them all, but only those, which are of particular interest and useful for our
further study.

Let A be a physical quantity in the set FL(S)(Σ,R), and therefore a

function symbol of signature Σ → R. In addition, let ∆̃ be a variable (and
therefore a term) of type PR; and let s̃ be a variable (and therefore a term)
of type Σ. Then some terms of particular interest to us are the following:

1. A(s̃) is a term of type R with a free variable, s̃, of type Σ.
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2. ‘A(s̃) ∈ ∆̃’ is a term of type Ω with free variables (i) s̃ of type Σ; and
(ii) ∆̃ of type PR.

3. {s̃ | A(s̃) ∈ ∆̃} is a term of type PΣ with a free variable ∆̃ of type
PR.

As we shall see, {s̃ | A(s̃) ∈ ∆̃} and ‘A(s̃) ∈ ∆̃’ are (closely related) analogues
of the primitive propositions “A ε ∆” in the propositional language PL(S).
However, there is a crucial difference. In PL(S), the ‘∆’ in A ε ∆ is a specific
subset of the external (to the language) real line IR. On the other hand, in
the local language L(S), the ‘∆̃’ in ‘A(s̃) ∈ ∆̃’ is an internal variable within
the language.

Adding axioms to the language. The axioms added to the language
must be represented by the arrow

true : 1τφ → Ωτφ

5.3.1 Representation of L(S) in a topos

As in the language PL(S) again in the case of L(S) we are looking for repre-
sentations φ of it in an appropriate topos τφ. This corresponds to constructing
a physical theory in τφ. The choice of both representation and topos depend
on the theory-type being used.

We now list the τφ-representation of the most significant symbols and
terms in our language L(S).

1. (a) The ground type symbols Σ and R are represented by objects Σφ

and Rφ in τφ. These are identified physically as the state object,
and quantity-value object, respectively.

(b) The symbol Ω, is represented by Ωφ := Ωτφ , the sub-object classi-
fier of the topos τφ.

(c) The symbol 1, is represented by 1φ := 1τφ , the terminal object in
τφ.

2. For each type symbol PT , we have (PT )φ := PTφ, the power object of
the object Tφ in τφ.

In particular, (PΣ)φ = PΣφ and (PR)φ = PRφ.
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3. Each function symbol A : Σ → R in FL(S)(Σ,R) (i.e., each physical
quantity) is represented by an arrow Aφ : Σφ → Rφ in τφ.

We will generally require the representation to be faithful : i.e., the map
A 7→ Aφ is one-to-one.

4. A term of type Ω of the form ‘A(s̃) ∈ ∆̃’ (which has free variables s̃, ∆̃
of type Σ and PR respectively) is represented by an arrow [[A(s̃) ∈
∆̃ ]]φ : Σφ × PRφ → Ωτφ .

We see that the analogue of the ‘∆’ used in the PL(S)-propositions
‘A ε ∆’ is played by sub-objects of Rφ (i.e., global elements of PRφ).
These objects are, of course, representation-dependent.

5. Any axioms that have been added to the language are required to be
represented by the arrow true : 1τφ → Ωτφ .

Topos-language ‘correspondence’. It turns out that, using the ‘local’
language L(S) one can find a bidirectional correspondence between the lan-
guage and the topos used in the representation. This lies in the fact that
for each topos τ there is a local language L(τ), whose ground-type symbols
are the objects of τ and whose function symbols are the arrows in τ . It then
follows that a representation of a local language, L, in τ is equivalent to a
‘translation’ of L in L(τ).

5.3.2 L(S) in classical physics

The representations of both languages PL(S) and L(S), in the case of Clas-
sical physics are rather easier and simpler to study than the application of
theory-type ‘Quantum Physics’. Again we use the topos, Sets, say τσ, which
is the same for all systems S and all representations σ. The ingredients of
that representation are:

1. (a) The ground-type symbol Σ is represented by a symplectic mani-
fold, Σσ, that is the state-space for the system S.

(b) The ground-type symbol R is represented by the real line, i.e.,
Rσ := IR.

2. Each function symbol A : Σ→ R, and hence each physical quantity, is
represented by a real-valued function, Aσ : Σσ → IR, on the state space
Σσ.
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3. The term ‘A(s̃) ∈ ∆̃’ of type Ω (where s̃ and ∆̃ are free variables of
type Σ and PR respectively) is represented by the function [[A(s̃) ∈
∆̃ ]]σ : Σσ × P IR→ {0, 1} that is defined by

[[A(s̃) ∈ ∆̃ ]]σ(s,∆) =

{
1 if Aσ(s) ∈ ∆;
0 otherwise.

(5.5)

for all (s,∆) ∈ Σσ × P IR.

To make the above clearer, let’s again examine the case of a particle S1

moving in one dimension, treated classically. We denote the representation
with σ. The topos τσ is Sets and Σ is represented by the symplectic manifold
Σφ := T ∗IR. The primary physical quantities that we need are position x,
momentum p and the energy of the system H, so

FL(S1)(Σ,R) = {x, p,H}.

Of course in the three dimensional case the set of physical quantities becomes

FL(S2)(Σ,R) = {x, y, z, px, py, pz, H}

furthermore we could add the angular momentum in our representation to
get

FL(S3)(Σ,R) = {x, y, z, px, py, pz, Jx, Jy, Jz, H}.
We note that the details of the Hamiltonian are encompassed in the repre-
sentation (in the topos) of the language. The same holds in the quantum
case, as well.

5.3.3 L(S) in quantum physics

A representation for the theory type ‘quantum physics’ is totally different.
Since we cannot use anymore the representation in topos Sets we move to
a more complicated one; the topos of presheaves SetsC

op

over a category C.
More specifically, the category C is the category V(H) where the objects are
the unital commutative von Neumann subalgebras of the algebra B(H) of
all bounded operators on the Hilbert space H and the arrows between two
objects stand for inclusion (i.e.,an arrow, from V ′ to V , is assigned if and
only if V ′ ⊆ V ). A precise definition of this category will be given later.
The type symbol Σ of the language is represented by the object Σ which is
defined as the spectral presheaf.
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5.4 Between two languages

As a conclusion we should highlight here is that, by introducing the local
language L(S) things turn to fit nicely when looking for representations on a
topos. This will become more obvious in the next chapters, were we are look-
ing for appropriate representations for those languages in a ‘quantum topos’.
For the time being let us note that by assigning to each physical system the
language L(S) we have a more powerful way of representing terms, that are of
physical interest. For example in the propositional language PL(S) the state
space S, the quantity-value space IR, the subsets ∆ and the physical quan-
tities are all external to the language. On the other hand the local language
L(S) has two ‘ground-type’ symbols Σ and R and a set of ‘functional sym-
bols’ that can be regarded as the ‘linguistic precursors’ of the state object,
the quantity-value object and the physical quantities (i.e.,arrows between
the former objects), respectively. In that way the entities that lie outside the
propositional language PL(S) are all brought ‘inside’ L(S).

In the next chapters we focus on the representations of both languages
PL(S) and L(S) in various topoi (other than Sets). This, as we shall see,
gives rise to the ‘employment’ of theory-type ‘quantum physics’.



Chapter 6

Quantum Topos I:
Daseinisation and the
representation of PL(S) in the
topos of Presheaves

6.1 Introduction

So far we have shown the connection of logic with topos; in fact every topos
carries its own logic. We claimed that a typed formal language together with
an appropriate topos can be used as a starting point for writing theories of
physics. A language, which could well be the propositional PL(S) or the local
language L(S), can be attached to each physical system. A representation
of it, in a topos gives us the description of that system, in the light of a
theory-type (which could be classical or quantum physics or even something
different!).

Different theory-types, describing the same system, acquire different topoi.
The example of harmonic oscillator is quite intuitive. An harmonic oscilla-
tor can treated both classically and quantum mechanically. The choice of
one of the two theory-types depends on the nature of the problem, the en-
ergy scale and others. However in the topos perspective we can examine the
(same) physical system both ways: either by using the topos Sets or using
the category of presheaves SetsC

op

over a category C. As noted before, for
a physical system there is not a single language. As shown already, two
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different systems, S and S ′ might share the same language, even when they
employ theory-types. Moreover, for a given theory-type, we can use the same
topos representation of the language, for different systems. However, what do
depend on the representation are the details of the system i.e.,the energy or
the potential of a system. In other words, for a given theory-type and hence
a topos, different representations of the language of a system S correspond to
different choices of the potential V (x) in the Hamiltonian H = T (p) + V (x).

So far so good. The case where one wants to employ the ‘quantum topos’
and represent on it a language, PL(S) or L(S), is more complicated than
the classical case. It is know from previous work (Isham and Butterfield [14])
that the topos now is the category of presheaves SetsV(H)op , over the cate-
gory V(H), of unital, abelian von Neumann subalgebras of B(H). B(H) is
the non- commutative algebra of all bounded operators on the Hilbert space,
H, of the quantum system. Since physical quantities are represented by
self-adjoint operators, one of the main achievements is to find a topos repre-
sentation for these operators.The propositions about a physical system turns
out to be represented by clopen sub-objects of - what we will later define as
- the spectral presheaf Σ of SetsV(H)op . This is where ‘daseinisation’ (Döring
and Isham [3]) comes in; a critical step in our construction. Roughly speak-
ing, daseinisation takes the mathematical objects representing propositions,
i.e.,projectors, as explained before, and maps them to a Heyting algebra,
which represents an intuitionistic logic. It is a necessary procedure, needed
to represent the propositional language PL(S) in the topos of presheaves
over the context category V(H).

The ‘generalized’ truth values ν(A ε ∆; |ψ〉) assign truth values to the
propositions for a quantum state |ψ〉. The latter do not anymore belong to
a Boolean algebra, since ΓΩφ, where propositions P̂ are mapped to, forms a
Heyting algebra.

This is the general scheme showing how the proposition about a quantum
system, the topos SetsV(H)op and a Heyting algebra H are connected. But
before focusing on daseinisation and quantum topos, it is exigent to give
some useful categorical and algebraic definitions.

6.2 Category of Presheaves

Remark 2 The collection of presheaves over a category C forms a category
SetsC

op
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Having originally defined categories as collections of objects with arrows
between them, by introducing functors we took a step up the ladder of ab-
straction to consider categories as objects, with functors as arrows between
them. Readers are now invited to fasten their mental-safety belts as we climb
even higher, to regard functors themselves as objects!1

The claim is that from a category C and a category D we can construct the
category, DC, whose objects are the the functors from C to D. Thus we need
to define the arrows between those ‘new’ objects. These are nothing more
that the natural transformations. An intuitive idea of those transformations
from the functor F: C → D to the functor G: C → D comes if we image
ourselves trying to superimpose or “slide” the F-picture onto the G-picture
i.e.,we use the structure of D to translate the former into the latter. This
could be done by assigning to each C-object a an arrow in D from the F-image
of a to the G-image of a. Denoting this arrow by τa we have τa : F (a)→ G(a).
In order for this process to be “structure-preserving” we require that each
C-arrow f : a→ b gives rise to a diagram

a

f

��

F (a)
τa //

F (f)
��

G(a)

G(f)
��

b F (b) τb
// G(b)

Natural transformations between two presheaves

that commutes. Thus τa and τb provide a categorial way of turning the
F-picture of f : a→ b into its G-picture. The arrows τ are called the natural
transformations while the arrows τa are called the components of τ .

The category of presheaves is the denoted SetsC
op

is the category of func-
tors to the category of Sets over a general category C.

Sub-objects of objets in SetsC
op

. A sub-object of an object (presheaf)
in SetsC

op

is a subpresheaf S of a presheaf T over C such that (i) for all C ∈ C
we have S(C) ⊆ T (C) and (ii) the restriction mappings S(iV ′V ) : S(V ) →
S(V ) are the same as the restriction mappings T (iV ′V ) : T (V )→ T (V ′) just
applied only to the elements in S(V ).

Definition 8 A sieve on an object A of a category C is a collection S of
morphisms f : B → A in C with the property that if f : B → A belongs to

1this ‘colorful’ and flowery introduction is taken from Goldblatt [1], pg 198
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S and if g : C → B is any morphism with codomain B, then f ◦ g : C → A
also belongs to S.

C

g

��

f◦g

  @
@@

@@
@@

B
f
//A

A sieve on A

We can define a presheaf Ω : C → Sets with the use of sieves, as follows.

Definition 9 The presheaf Ω is defined:

• On objects A of C: ΩA the set of all sieves in A and

• On morphisms f : B → A : Ω(f) : ΩA → ΩB where

Ω(f)(S) := {h : C → B|f ◦ h ∈ S} (6.1)

for all S ∈ ΩA.

A crucial property here, is that ΩA is a Heyting algebra where the unit
element 1ΩA

in ΩA is the principal sieve ↓ A and the null element 0ΩA
is the

empty sieve .
The presheaf Ω is the sub-object classifier for the category SetsC

op

(see [2],
pg 32). Furthermore one can easily shows that SetsC

op

is a Cartesian closed
category. In addition, the fact that there is always a sub-object classifier Ω
justify us to say that:

Remark 3 The category SetsC
op

is a topos

Definition 10 The category V(H) of unital, abelian subalgebras (category of
contexts) is defined as the category which has

• Objects: abelian subalgebras V(H) of the algebra B(H) of all bounded
operators on H

• Morphisms: iV ′V : V ′ → V, V ′, V ∈ Ob(V(H)) if and only if V ′ ⊆ V
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SetsV(H)op. A Special case of SetsC
op

is the topos SetsV(H)op of all presheaves
over the context category V(H). It is the main topos that concerns us in when
finding a representation of the projection operators in a Heyting algebra.

6.3 Operators, Propositions and Quantum Logic

We have shown, so far, how propositions about a system are connected to
the state space S; the space where the states of a physical system ‘live’. In
the classical case the propositions are represented in a subset2 of that space
(manifold) and they yield a truth value, according to relation 5.2. Conversely
every subset of S corresponds to a categorical property of the system. Those
propositions, once represented by set-theoretic operations, form a Boolean
algebra.

In quantum mechanics things are different, since the whole mathematical
background is different. Each physical system is associated with a (separable)
Hilbert space H, the unit vectors of which correspond to possible physical
states of the system. The state space is the projective unit sphere S = S(H)
of a Hilbert space H3. Each “observable” real-valued random quantity is
represented by a self-adjoint operator A on H, the spectrum of which is
the set of possible values of A. If u is a unit vector in the domain of A,
representing a state, then the expected value of the observable represented
by A in this state is given by the inner product < Au, u >. The observables
represented by two operators A and B are commensurable if and only if A
and B commute, i.e., AB=BA, [22].

Logic of Quantum Propositions We should seek a bit deeper to find
the ‘right’ representation of propositions in the quantum scheme. The ob-
servables that should be regarded as the ‘encoding propositions’ ones are
those whose spectrum is just the set {0,1}. The operators that yield eigen-
values only in that two-point set are not more nor less than the projection
operators P , for which P 2 = P . Projections map the whole (vector) space to
a subspace, which, for a projection P , we denote by codP=‘codomain of P ’,

2More precisely Lebesgue measurable subset, see Birkhoff-von Neumann [17]
3However not all subsets of S correspond to quantum-mechanical properties of the

system. The latter corresponds only to subsets of the special form S
⋂
M , where M is

a closed linear subspace of H. In particular only propositions of this form are assigned
probabilities.
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and leave the points in that subspace unchanged. This means that we can
characterize every subspace D of H, using the outcomes {0,1} that the set
PD of projectors P , which project on D, gives for every operator in H. Hence
such operators are in one-to-one correspondence with the closed subspaces of
the Hilbert space H, in the same way that the characteristic functions, in a
general topos E, are in one-to-one correspondence to the sub-objects of an
object in the topos. In other words, the codomain of a projector P is closed
and any closed subspace is the codomain of a unique projection.

In such a way we establish a “relation between the properties of a physical
system on the one hand and projections on the other,(which) makes possible
a sort of logical calculus with these” (von Neumman [16], p.253)

That relation is quite important since it allows us to examine the propo-
sitions in the ‘logic calculus’ framework.

To see that let us first note that the closed subspaces of H form a poset,
if ordered by set-inclusion ⊆.

{x, y, z}

{x, y}

99sssssssss
{x, z}

OO

{y, z}

eeJJJJJJJJJ

{x}

OO 99ssssssssss
{y}

99tttttttttt

eeKKKKKKKKKK

{z}

OOeeJJJJJJJJJJ

∅

99ssssssssssss

eeKKKKKKKKKKKK

OO

Ordered by set-incusion, the sub-sets of a set form a poset

It turns out that this poset is furthermore a complete lattice, in which
the minimum (greatest lower bound or meet)

∧
of a set of subspaces is

their intersection, while their maximum (least upper bound or join)
∨

is the
closed span of their union. The global minimum of the lattice of the closed
subspaces is the null subspace 0, corresponding to the null projection 0̂ and
it is contained in every subspace. The global maximum, not surprisingly, is
the whole Hilbert space H, corresponding to the identity operator 1̂. Since a
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typical closed subspace has infinitely many complementary closed subspaces,
this lattice is not distributive; however, it is orthocomplemented.

In view of the above-mentioned one-to-one correspondence between closed
subspaces and projections, we may impose upon the set L(H) of the projec-
tion operators, the structure of a complete orthocomplemented lattice, defin-
ing P � Q, if and only if cod(P ) ⊆ cod(Q) and P ′ := ¬P = 1 − P , where
we denote cod(P ) the (closed) space that P projects to. It is straightforward
that P � Q just in case PQ = QP = P . This simply says that whenever
P projects onto a set cod(P ) that is subset of cod(Q), the resulting operator
will lie onto cod(P ) regardless the order of P and Q acting. More generally,
if PQ = QP , then PQ = P ∧ Q, the meet of P and Q in L(H), i.e.,the
codomain is just the set-theoretical disjunction of cod(P ) and cod(Q). Also
in this case their join is given by P ∨ Q = P+Q-PQ i.e.,the set-theoretical
conjunction.

This construction admits that whenever two projectors P and Q commute
the algebra that they form is Boolean. Alternatively the expressions

PQ = QP

and

P,Q lie in a common sub− ortholattice of L(H)

are equivalent. These operators are members of a Boolean ‘block’ of L(H).
From a more physical point of view, that brings us to the familiar statement
that commuting observables are simultaneously measurable.

The above relation between the propositions about a quantum system and
projections onH enables one to establish and develop a quantum logic. Actu-
ally it is the principle ingredient of quantum mechanics; once the quantum-
logical skeleton L(H) is in place the remaining statistical and dynamical
apparatus of quantum mechanics is essentially fixed. In that sense quantum
mechanics reduces to quantum logic and its attendant probability theory.
But, as shown above, the logical operations apply only to commuting pro-
jections, which are identified with simultaneously decidable propositions. In
that case the lattice-theoretic meet and join if projections are interpreted
as their conjunction and disjunction. Von Neumman and Birkhoff, in 1936,
proposed that the above interpretation can be extended to non commuting
projections as well. Such a is construction is possible, but immediately faces
the problem that the lattice L(H) is not distributive, i.e.,does not satisfy
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the relation
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

or equivalently

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
(6.2)

The obstacle now is the impossibility of giving to these ‘quantum’ proposi-
tions a truth-functional interpretation. That led von Neumman and Birkhoff
to regard the distributive law as not a universally valid one. A deep analysis
of that concept is beyond the scope of that work. However we will come back
to that problem later.

To conclude this short introduction to quantum logic we should mention
the ‘non-classical’ logic that emerges is the reflection of the non-commutability
of operators that represent observables. Last, the relation, stated above, be-
tween propositions about a quantum system and projections inH, was strong
enough to lead Mackey to a system of axioms about quantum propositions -
‘questions’ for a system,(Mackey [18]), which includes the following:

Axiom 1 The partially ordered set of all questions in quantum mechanics is
isomorphic to the partially ordered set of all closed subspaces of a separable,
infinite dimensional Hilbert space.

6.4 Daseinisation

6.4.1 Approximating projections from the ‘context’ view-
point

In the previous section we described how projections (i.e.,propositions about
a quantum system) are in one-to-one correspondence to the closed subspaces
of the Hilbert space H. A physical quantity is represented by a self-adjoint
operator Â in the algebra B(H) of all bounded operators onH. A proposition
‘A ε ∆’ is represented by the projection operator Ê[A ε ∆] in B(H)4, where
∆ ⊆ IR is a Borel subset.

Now we can choose the unital, abelian algebra V(H) of bounded operators
in H, which is of course a subalgebra of B(H), and form a category out of

4in fact it is the spectral theorem that gives the connection between the projection
operators and the propositions.More specifically, according to it in each Borel subset ∆ of
the real line, there exists a projection Ê[A ∈ ∆] which can be interpreted as the proposition
of “the physical quantity Â has a value in the Borel set ∆”



6.4. DASEINISATION 59

it. The category structure is that of partially-ordered set whose objects are
the abelian subalgebras, and in which there is an arrow iV ′V : V ′ → V with
V ′, V ∈ Ob(V(H)) if and only if V ′ ⊆ V . That category, sometimes called
‘the category of contexts’ is the basis of topos approach to quantum theory.

From the previous analysis of quantum logic it seems that a projection
operator is something quite useful for a linguistic approach to the quantum
theory. On the other hand the category of contexts, which is our general
tool for a quantum topos, does not need to contain the projections, since
the latter could well not belong to an abelian subalgebra; some of them not
commute. So what can we say for the projections P̂ from the point of view
of V(H)?

The answer lies in ‘daseinisation’, i.e.,define the ‘closest but not smaller
than P̂ ’ projection operator that does belong to V(H)

Daseinisation Define the ‘smallest’ projection operator δ(P̂ )ν in V that is
greater than or equal to P̂ :

δ(P̂ )ν :=
∧
{Q̂ ∈ P (V )|Q̂ � P̂} (6.3)

In this way we can ‘approximate’ P̂ from the perspective of V ∈ Ob(V(H)).
Also note that if the projection P̂ does not belong to V(H) then δ(P̂ )
does belong; it is ‘sent’ there by the process of daseinisation. Clearly, if
P̂ ∈ V(H) ⇒ δ(P̂ )ν = P̂

Let us note that 6.3 gives a minimum over a (maybe infinite) family
of projections Q̂ in the projection lattice P(V) of an abelian subalgebra V
of B(H). Since the lattice P(V) is complete5 δ(P̂ )V is well-defined and in
particular it is a projection in V. In general, daseinisation is a mapping
P̂ 7→ δ(P̂ )ν (initially introduced by de-Groote as the ‘V-support’ of P) ⇒

Ê[A ∈ ∆] 7→ {δ(Ê[A ∈ ∆])ν |V ∈ Ob(V(H))}

This is an important step in our scheme. In fact we shall regard the collec-
tion {δ(Ê[A ∈ ∆])ν |V ∈ Ob(V(H))} of projection operators for each context
V as the appropriate representation of a proposition about the quantum sys-
tem, rather than the projection Ê[A ∈ ∆]. The connection with topos is that
this collection of projectors is a global element of -what we call- the ‘outer’
presheaf.

5We know that the projection lattices are complete from the theory of von Neumann
algebras
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Definition 11 The outer presheaf O is defined over the category V(H) as
follows:

(i) On objects V ∈ Ob(V(H)): OV := P(V )

(ii) On morphisms iV ′V : V ′ ⊆ V : The mapping O(iV ′V ) : OV → OV ′ is
given by O(iV ′V )(α̂) := δ(α)V ′ for all α̂ ∈ P(V ).

With this definition, it is clear that the assignment V 7→ δ(P̂ )V defines
a global element of the presheaf O. Indeed, for each context V , we have the
projector δ(P̂ )V ∈ P(V ) = OV , and if iV ′V : V ′ ⊆ V , then

δ
(
δ(P̂ )V

)
V ′

=
∧{

Q̂ ∈ P(V ′) | Q̂ � δ(P̂ )V
}

= δ(P̂ )V ′ (6.4)

and so the elements δ(P̂ )V , V ∈ Ob(V(H)), are compatible with the structure
of the outer presheaf. Thus we have a mapping

δ : P(H) → ΓO

P̂ 7→ {δ(P̂ )V | V ∈ Ob(V(H))} (6.5)

from the projectors in P(H) to the global elements, ΓO, of the outer presheaf.
This is the daseinisation map (cf. 6.3)

A presheaf that plays a fundamental role in the construction of repre-
sentation in a quantum topos is the Spectral Presheaf and is actually being
regarded as the quantum analogue of phase space.

Definition 12 Spectral presheaf The spectral presheaf, Σ, is defined as the
following functor from V(H)op to Sets:

1. On objects V : ΣV is the Gel’fand spectrum of the unital, abelian sub-
algebra V of B(H); i.e., the set of all multiplicative linear functionals
λ : V → |C such that λ(1̂) = 1.

2. On morphisms iV ′V : V ′ ⊆ V : Σ(iV ′V ) : ΣV → ΣV ′ is defined by
Σ(iV ′V )(λ) := λ|V ′; i.e., the restriction of the functional λ : V → |C to
the subalgebra V ′ ⊆ V .

It turns out that Σν is a compact, Hausdorff topological space.
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Definition 13 A Sub-object S of the spectral presheaf Σ is a functor S :
V(H)op → Sets such that:

1. Sν is a subset of Σν for all ν

2. If ν ′ ⊆ ν then S(iν′ν) : Sν → Sν′ is just the restriction λ 7→ λ|ν′ (i.e.,the
same as for Σ), applied to elements λ ∈ Sν ⊆ Σν

In other words, clopen sub-objects S of the spectral presheaf Σ are sub-
objects of Σ, such that for all ν the set Sν is a clopen subset of Σν

According to the Gel’fand spectral theory, that motivates us to establish a
link between the projection operators and sub-objects of the spectral presheaf
in the quantum topos. More precisely a projection operator â ∈ P(V ) cor-
respond to a unique clopen subset of the Gel’fand spectrum, ΣV . Extending
that in the topos framework and with the help of daseinisation we can for-
mulate the aforementioned connection with topos.

6.4.2 From projections to the spectral presheaf

So far we have introduced functors and presheaves, as a special case of the
former; they are just functors which maps from a general category Cop to the
category of sets, Sets. The spectral presheaf is a special object of SetsV(H)op ;
it maps the objects ‘subalgebras’ to the Gel’fand spectra, which are objects
in Sets.

To construct a quantum theory of physics we should seek representations
of a formal language in the topos SetsV(H)op .

Our task is to find the map from the lattice of projectors PL(S) to the
Heyting algebra Subcl(Σ) of clopen sub-objects of the spectral presheaf Σ

πcl : PL(S)0 → SubclΣ (6.6)

where we denote with Subcl(Σ) the set of all clopen sub-objects of Σ.
With daseinisation, a projector P̂ is transformed to a clopen sub-object

δ(P̂ ) of the spectral presheaf in the topos SetsV(H)op .
A projection operator P̂ ∈ P(V ) corresponds to a subset

SP̂ := {λ ∈ ΣV |λ(P̂ ) = 1} (6.7)

of the Gel’fand spectrum ΣV of V . This subset turns to be clopen and this
the main reason why we need clopen subobjects of the spectral presheaf,
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as the codomain of the above mapping. Conversely, to each clopen subset
S ⊆ ΣV , there corresponds a unique projection P̂ ∈ P(V ).

Theorem 4 For each projection operator P̂ ∈ P(H), the collection of sub-
sets

SP̂ := {Sδ(P̂ )V
⊆ ΣV |V ∈ Ob(V(H))}

forms a clopen sub-object of the spectral presheaf Σ.

The proof can be found in Döring and Isham, [2].

To summarize the daseinisation process we can say that two steps
are involved in the daseinisation of projectors and the connection of it to an
algebra;

1. the formula 6.3 which ‘adapts’ P̂ to all subalgebras V that do not
contain P̂ by approximation from above, and

2. for each δ(P̂ )V , V ∈ V(H), construct the corresponding clopen subset
of ΣV by using 6.7, so that for each abelian subalgebra V we have one
clopen subset.

Then theorem 4 assures that the collection of those subsets forms a sub-
object of the spectral presheaf Σ.

Moreover, what the mapping

δ : P(H)→ Subcl(Σ) (6.8)

actually does, is to send a projection operator on H to a clopen sub-object
of Σ.
As explained before the propositions about a quantum system must be rep-
resented by a projection operator P̂ . Thus δ maps a proposition about the
system to sub-objects of the spectral presheaf and ‘restores’ the analogy to
the situation in classical physics where propositions about the classical sys-
tem are represented by subsets of the state space.
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6.4.3 The Heyting algebra of the sub-objects of Σ

. We can see why the map 6.6, we were looking for, is defined as:

πqt(A ε ∆) := δ(Ê[A ∈ ∆]) (6.9)

However, that mapping refers to single propositions or ‘letters’ in our lan-
guage. To extend this definition from PL(S)0 to PL(S), it is necessary
to consider the representation of compound propositions, like “A1 ε ∆1” ∨
“A2 ε ∆2”. But this propositional calculus, that comes up here, must be
represented by a specific algebra.

To examine that algebra, we recall some standard results from general
topos theory. Let τ be a topos and d an object of it. The collection Sub(d)
of all sub-objects of the object d, together with the ‘object-inclusion’ relation6

(Sub(d),⊆) is a bounded lattice7 with a maximum 1d and a minimum element
0d. Furthermore in Sub(d) there is a relative pseudo-complement −f , of the
monic arrow f, such that −f : −a � d, for every f : a � d, where −a
is the greatest element in the lattice Sub(d), disjoint from a (for proof see
Goldblatt, [1], p. 180). So Sub(d) is a relatively pseudo − complemented
lattice with a zero element. But this is exactly the definition of a Heyting
algebra. So, we conclude that:

the collection Sub(d), of all sub-objects of d is a Heyting algebra

When representing quantum mechanics in a topos, we are interested in
the projection operators, which ‘convey’ the propositions, about the quan-
tum system. From the Gel’fand theory it turns out that the topology of
the Gel’fand Spectrum of ΣV is extremely disconnected ; the subsets of the
Gel’fand spectrum ΣV of V , that projection operators P̂ ∈ P(V ) correspond
to, are clopen. An arbitrary family of such clopen subsets of ΣV forms a
lattice, denoted by CL(ΣV ). Moreover, the latter is isomorphic to the lattice
P(V ), i.e., the mapping

P(V )↔ CL(ΣV )

is bijective. Thus it is natural to ask what happens to the collection Subcl(Σ)
of clopen sub-objects of the spectral presheaf Σ. The following theorem gives
us the answer.

6a monic arrow f : a� d
7see also appendix
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Theorem 5 The collection, Subcl(Σ), of all clopen sub-objects of Σ is a
Heyting algebra.

for proof see [3], pg 13.

This is a very important result. With the operation of ‘daseinisation’ we
were able to represent the propositions of PL(S) about the quantum system
in sub-objects of Σ in topos SetsV(H)op . In other words, we mapped the
quantum logic of projection operators into a intuitionistic logic, represented
by the Heyting algebra H of sub-objects of Σ. There is a subtlety here, worth
noting. While the projection operators P̂ define a lattice in H which is not-
distributive, a Heyting algebra H is always distributive. In our case, this
lies in the daseinisation procedure; a daseinised bounded operator belongs in
the abelian sub-algebra V(H) of B(H) and commutative operators define a
distributive lattice. However, that mapping, from a non-distributive lattice
to a distributive one, even it preserves the partial ordering it does not preserve
the negation and meet of the lattice, i.e.,

δ(P̂ ∨ Q̂) = δ(P̂ ) ∨ δ(Q̂), (6.10)

δ(P̂ ∧ Q̂) � δ(P̂ ) ∧ δ(Q̂) (6.11)

(see [3], p. 15)

Hence the lattice structure of P(V ) is not completely preserved, when
mapped to Subcl(Σ) and this is the ‘price’ we pay, for ‘distributising’ our
lattice.

6.4.4 Sub-objects of the spectral presheaf and global
elements of the outer presheaf

In 6.5 we defined a relation between the projections P̂ and the global elements
of the outer presheaf O i.e.,a mapping δ : P(H)→ ΓO. In 6.8 on the other
hand, the relation is between projections on H and sub-objects of Σ. So a
sensible question that someone might asks is what is the connection between
the global elements ΓO of the outer presheaf and the clopen sub-objects
Subcl(Σ) of the spectral presheaf.
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To answer that, let’s first note that the map

δ : P(H)→ ΓO

is injective. Then in SetsV(H)op there is a monic arrow O → PclΣ and so the
map

ΓO → Γ(PclΣ)

is injective as well. Keeping in mind that a global element f : 1→ PΣ of a
power object PΣ is a sub-object f : S � fΣ of the object Σ, it follows from
these that the daseinisation map

δ : P(H)→ Γ(PclΣ) ' Subcl(Σ).

Thus there is an isomorphism between the collection of clopen sub-objects
of the spectral presheaf Σ and the global elements of the power object PclΣ

a

δ
��

δ

""E
EEEEEEE

O
pιq
// PclΣ

and the above diagram commutes.

6.5 Truth values and truth objects

6.5.1 Truth values in Classical Physics

Once a suitable representation of the propositions, about a system, is achieved,
one wants to know whether a certain proposition holds true or not. We have
discussed shortly the truth values of propositions in classical physics, in sec-
tion 5.2. We gave the general scheme about how a proposition P about the
system S, acquires a truth value ν, for every state σ of the system.

A proposition, in classical physics, is represented by a subset

πcl(A ε ∆) := Ă−1(∆) ⊆ S (6.12)

of the state space S. Then, the proposition is true in a state s if and only
if s ∈ Ă−1(∆). That idea is captured in fig. 5.1. This says that a proposition
which holds true for a state s, might holds false for a state s′, and this is not
surprising at all;
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• physically, the statement that a proposition about the system, e.g. the
physical quantity A has a value that lies in the subset ∆ ⊆ IR, is satisfied
only by the states of the system which ‘make’ that physical quantity of
the system acquire such a value, sounds rather trivial

• mathematically, some elements x of S belong to the subset K of S,
while there are other elements x′ that do not!

We will see that in quantum mechanics the above scheme does not work
so easily. Thus, it is the state s that assigns a truth value to every primitive
proposition “A ε ∆”. This truth value, denoted by ν(A ε ∆; s) lies in the set
{true, false}, which we identify with the set {0, 1}.

Now the first (‘physical’) statement, is summarized in :

ν(A ε ∆; s) =

{
1 if s ∈ πcl(A ε ∆) := Ă−1(∆)
0 otherwise

while the second (‘mathematical’) one, can be rewritten as:

ν(x ∈ K) =

{
1 if x belongs to K
0 otherwise

The similarity of the above to the characteristic function is not an ac-
cident; indeed, the above array defines a ‘function‘ that characterizes the
elements of the subset K of S. The whole construction fits nicely in the
topos Sets, of sets; the objects are sets, K is a sub-object of the state object
S and the truth values lie in the sub-object classifier Ω. In the case of Sets
the sub-object classifier, of course, is Ω ≡ {0, 1} and hence the sub-object
classifier gives us the set of the truth values.

Now, in a general topos τ , we have:

K
f //

!
��

X

χK
��

1
true

// Ω

where X is any object in τ , f is a monic arrow, 1 the initial object, Ω
the sub-object classifier and ‘!’ a unique arrow. A global element x of X,
x ∈ ΓX, is identified with an arrow

pxq : 1→ X (6.13)
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The sub-object K of X can also be identified as a global element of the
power-object PX, of X:

pKq : 1→ PX (6.14)

Then, by definition, we have

ν(x ∈ K) := χK ◦ pxq = χK(x) (6.15)

for the truth value of the proposition “x ∈ K”, where χK is the characteristic
arrow χK : X → Ω. This is a composition of two arrows; first we pick up a
global element of X, then map it to the sub-object classifier, to yield a truth
value;

χK ◦ pxq : 1→ Ω (6.16)

This can be depicted in the commutative diagram:

X

χK
��

1
true

//

pxq
??��������
Ω

which is the ‘lower half’ of the above, sub-object classifier square. From
6.16 follows that ν(x ∈ K) is a global element of Ω, i.e.,

ν(x ∈ K) ∈ ΓΩ

.

6.5.2 Truth values and truth objects in Quantum Physics

Truth values in Quantum Physics

In the quantum case now the previous scheme does not work out and as-
signment of truth values is rather complicated. The topos used is SetsV(H)op

and all the objects are presheaves. The sub-object classifier is now Ω :=
ΩSetsV(H)op at each stage V is the set of all sieves on V, as explained before.
The expression 6.18 for a truth value, becomes

ν(x ∈ K)V := {V ′ ⊆ V |xV ′ ∈ KV ′} (6.17)

for a sub-object K of X, with global element pxq : 1 → X. In a topos
framework, the truth values, assigned to propositions, are global elements of
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the sub-object classifier of τ . Hence they are elements of the Heyting algebra
ΓΩτ . We described that in the classical case, where Ω = {0, 1} and the
algebra is Boolean.

Now we want to assign truth values in the propositions about the (quan-
tum) system. As explained before, a proposition is represented in a sub-
object K � Σ of the state object of SetsV(H)op , i.e., the spectral presheaf Σ.
Thus we need a global element psq : 1→ K in 6.17. But from the Kochen-
Specker theorem we know that the spectral presheaf cannot have global ele-
ments8! This is a deeper result in quantum physics; unlike classical physics,
in ordinary quantum mechanics, there are no micro-states, i.e., global el-
ements of the state object, and hence truth values cannot be assigned to
propositions.

The truth object

In the absence of global elements of Σ, we have to modify our scheme and
refine the truth value assignment in quantum propositions. To overcome
that difficulty we have to look deeper in the topos construction and define
a truth object. That object will play the role of state; a generalized state
which truth values can be assigned to. For that special object we have to add
a term in the language L(S); a linguistic precursor T, of the truth object.
This term is of type PPΣ (while K is of type PΣ). So, a representation in
a topos τφ, is denoted by PPΣφ (PΣφ respectively). Then a global element
pTq : 1τφ → PPΣφ defines a concrete truth object (while a global element
pKq : 1τφ → PΣφ defines a sub-object of Σφ), in τφ. We recall that, in the

topos τφ, each proposition is associated to a representation [[A(s̃) ∈ ∆̃ ]]φ of
the term A(s̃) ∈ ∆̃, of type PΣ, in L(S).

A proposition, which lies in pKq, will now hold a truth a value:

ν(pKq ∈ T) : 1τφ → Ωτφ (6.18)

In the case of classical physics, Ωτφ ' {0, 1} , 6.18 becomes

ν(A ε∆; T) =

{
1 if A−1(∆) ∈ T
0 otherwise

which reproduces the previous results.

8more precisely this is the ‘topos-formulation’ of the Kochen-Specker theorem, intro-
duced by Isham and Butterfield [14, 15]
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To give an example of a truth value of a quantum proposition we will
switch back to PL(S). In the case of SetsV(H)op , a proposition ‘A ∈ ∆’
is represented by a projection P̂ and K = δ(P̂ ). The truth value of that
proposition turns to be:

ν(pδ(P̂ )q ∈ T)V = {V ′ ⊆ V |δ(P̂ )V ′ ∈ TV ′} (6.19)

where now, we need the restriction to clopen sub-objects of Σ. So the truth
object T has to be a global element of PPclΣ, or -equivalently- a sub-object
of PclΣ i.e.,

pTq : 1τφ → PPclΣ

. (similarly K ∈ Subcl(Σ))

In the above brief discussion we have skipped many (technical)
steps. A more detailed discuss can be found in Döring and Isham, [4], p. 26,
27. Admittedly this part of C. Isham’s and A. Döring’s work is the most com-
plicated and unfriendly, maybe of all four papers. However the reader should
keep in mind that, since we are not allowed to use global elements of the state
object Σ, i.e.,quantum micro-states, by virtue of Kochen-Specker theorem,
we have to generalize the truth value assignment in the topos framework.
A construction of a truth object is possible, which reproduces the results of
the classical case. As can be seen from 6.18, 6.19, the truth object T plays
the role of a state and assigns truth values to the propositions. It is worth
noting that, in 6.18, the truth values lie in the sub-object classifier Ωτφ , as
they should.

6.5.3 Truth object and global elements of Ω

Let ψ ∈ H be a pure state, i.e., a unit vector, and P̂ψ a projection operator
onto a saubspace of H.

A formal definition of the truth object can be given here, according to
the original one, on papers [14, 15]. As described there, to each quantum
state |ψ〉 ∈ H, there corresponds a truth object, T |ψ〉:

T |ψ〉 := {P̂ψ ∈ OV | Prob(P̂ψ; |ψ〉) = 1}
= {P̂ψ ∈ OV | 〈ψ| P̂ψ |ψ〉 = 1}

(6.20)
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for all stages V ∈ Ob(V(H)). Here the projection operator P̂ψ represents a
proposition about the system, the (normalized) quantum state is |ψ〉 and

Prob(P̂ψ; |ψ〉) is the probability that the proposition holds true.
Note that the truth object is defined as a sub-object of the outer presheaf,

O. Furthermore, O is a sub-object of the presheaf PclΣ (i.e.,there is a monic
arrow O → PclΣ). It follows that T |ψ〉 is a sub-object of is a sub-object of
PclΣ;

T |ψ〉 → PclΣ. (6.21)

From the last relation we guess that there must be a way of defining the
truth object using the clopen subsets of the spectral presheaf, rather than
the outer presheaf.

To see that, let ψ ∈ H be a pure state, i.e., a unit vector, P̂ψ the projection
onto the corresponding one-dimensional subspace of H, and let Subcl(ΣV ) be

the clopen subsets of ΣV . If S ∈ Subcl(ΣV ), then P̂S ∈ P(V ) denotes the
corresponding projection. The truth object Tψ = (Tψ

V )V ∈V(H) is given by

∀V ∈ V(H) : Tψ
V : = {S ∈ Subcl(ΣV ) | 〈ψ| P̂S |ψ〉 = 1} (6.22)

= {S ∈ Subcl(ΣV ) | P̂S ≥ P̂ψ} (6.23)

= {S ∈ Subcl(ΣV ) | P̂S ≥ δo(P̂ψ)V } (6.24)

= {S ∈ Subcl(ΣV ) | S ⊇ Sδo( bPψ)V
}. (6.25)

Proof of the equivalence of 6.22 - 6.25 The equivalence 〈ψ| P̂S |ψ〉 =

1 ⇔ P̂S ≥ P̂ψ, between 6.22 and 6.23, follows from a simple geometrical

analysis. The projector P̂S projects into a subspace of H, say a 2 dimensional
space. The term P̂S |ψ〉 gives the projection of |ψ〉 into that subspace.

Note that |ψ〉 is unit vector, ‖ |ψ〉‖= 1 and hence ‖P̂S |ψ〉‖6 1. Now from

〈ψ| P̂S |ψ〉 = 1 it follows that:

|ψ〉 // P̂S |ψ〉

and since |ψ〉 is a unit vector we get:

P̂S |ψ〉 = |ψ〉.

This says that, whatever the vector |ψ〉 is, the projection onto P̂S is the vector

itself. So the projectorP̂S leaves the whole projection space P̂ψ invariant; this

only can happen if P̂ψ is a subset of P̂S, i.e.,

P̂S ≥ P̂ψ. (6.26)
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Figure 6.1: For 〈ψ| P̂S |ψ〉 = 1, the angle θ must be zero.

In a similar way we can show that whenever the inequality 6.26 holds,
the projection of |ψ〉 onto P̂S yields |ψ〉, i.e.,P̂S |ψ〉 = |ψ〉 and the equation

〈ψ| P̂S |ψ〉 = 1 is true.

Last, it is easy to see that the relation 6.24 is true; from the definition
of daseinisation we have P̂ψ ≥ δo(P̂ψ)V , always (see definition of outer da-

seinisation, eq. 7.1 in the next chapter). And, since P̂S ∈ P(V ) it follows

that P̂S ≥ δo(P̂ψ)V . Hence, the corresponding, to the projectors, subsets will
follow the ‘same’ inequality, i.e., S bPS := S ⊇ Sδo( bPψ)V

, as it is in 6.25.

Truth values as global sections of Ω

Our claim here is that the entities ν(pSq ∈ Tψ)V form a global element of
the sub-object classifier Ω. We will interpret the former as the truth value of
a proposition, represented by S ∈ Subcl(Σ), about a quantum system, which
is in the state |ψ〉. Obviously, the role of the state of the system, here, is
played, again by Tψ and the truth values do lie in the sub-object classifier. It
is a useful result, which is in accordance to our previous, general, discussion
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about the truth values.
To see that explicitly, let S ∈ Subcl(Σ) be a clopen sub-object of the

spectral presheaf. Then we have the following:

Lemma 6 v(pSq ∈ Tψ)V := {V ′ ⊆ V | S(V ′) ∈ Tψ
V ′} is a sieve on V .

Lemma 7 9 If σ is a sieve on V ∈ V(H) and V ′ ⊂ V , then the pullback
σ ◦ iV ′V is given by σ∩ ↓V ′.

The proofs of those two lemmas can be found in the appendix.

Proposition 8 The collection of all sieves v(pSq ∈ Tψ)V , for all V ∈ V(H),
(see Lemma 6) forms a global element of Ω.

Proof. First let us simplify the notation, a bit, and denote

ν(pSq ∈ Tψ)V := σ̌V

ν(pSq ∈ Tψ)V ′ := σ̌V ′
(6.27)

From the definition of the presheaf of sieves Ω (see 6.1) we know that

Ω(iV ′V ) : Ω(V )→ Ω(V ′)

σ 7→ σ′ = σ ◦ iV ′V
(6.28)

Here, σ′ : 1V ′ → ΩV ′ and σ : 1V → ΩV are global elements of ΩV ′ and ΩV

respectively, and 6.28 gives a pullback of σ along iV ′V : V ′ → V , i.e.,

1V = {∗} //

id
��

ΩV

Ω(iV ′V )

��
1V ′ = {∗} // ΩV ′

So, for proving that ν(pSq ∈ Tψ)V form a global element of Ω we have to
show that

ν(pSq ∈ Tψ)V ′ = ν(pSq ∈ Tψ)V ◦ iV ′V (6.29)

or by using 6.27
σ̌V ′ = σ̌V ◦ iV ′V (6.30)

9This holds, analogously, for sieves on any partially ordered set, not just V(H)
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i.e., σ̌V ′ comes up as a pullback of σ̌V .
From Lemma 7, it suffices to show that, whenever V ′ ⊂ V

σ̌V ′ = σ̌V∩ ↓V ′ (6.31)

Now If V ′′ ∈ σ̌V ′ , then S(V ′′) ∈ Tψ
V ′′ . The last one implies V ′′ ∈ σ̌V .

Conversely, if V ′′ ∈↓V ′ and V ′′ ∈ σ̌V , then, again, S(V ′′) ∈ Tψ
V ′′ , which

implies V ′′ ∈ σ̌V ′ .
We have reached a very important result here; The collection of all sieves

ν(pSq ∈ Tψ)V is a global element of Ω. The construction of those sieve was
possible, only with the help of the truth object T, which, as we remarked
again, plays the role of the state Tψ, in a quantum system.

Analogy to Classical Physics; a Neo-Realism is possible

This bring us to a complete analogy to the classical physics, where, the
state space, the state of a system and the truth values of propositions about
the system are well defined. Namely, we have constructed, for the case of
quantum physics, something that looks like the state space (i.e.,the state
object Σ), something that looks like a state of the system (i.e.,the truth object
T) and something that could well be a truth value of a quantum proposition
(i.e.,the sieves ν(pSq ∈ Tψ)V ). Indeed, these sieves can be interpreted as
truth values; they lie in the sub-object classifier Ω of the topos of presheaves
SetsV(H)op !

This construction looks attractive, but is not so easy to ‘handle’ and com-
prehend. In classical physics, our topos is Sets and the sub-object classifier
is just ΩSets ' {0, 1}. This means that the propositions about the classical
system are assigned truth values, which lie in that set; either a proposition
(for a particular state of the system) is true, either it is false.

Partial truth

In the topos of presheaves SetsV(H)op , even the general scheme remains the
same, some things turn out to be, conceptually, quite different. The sub-
object classifier now is the presheaf of sieves Ω. So the propositions about
the quantum system will acquire truth values, which lie in Ω. Let’s see how
the truth values {0, 1} can be adapted from the sieves viewpoint. We identify
the maximal sieve as the truth value {1} and the empty sieve as the truth
value {0}. It turns out that these are not the only possible constructions
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in a collection of sieves. In other words, there is enough space left for truth
values that are neither true nor false! We call that10 state of truth, a
partial truth.

maximal sieve // true

‘mid’ sieve // partially true

empty sieve // false

Last, to see how a sieve is constructed and the different ‘grades’ of it, we
recall that:

a sieve on an object A is a collection S of arrows, f : B → A with
codomain A, with the property that if f : B → A belongs to S and g : C → B
is any arrow with codomain B, then the composition f ◦ g : C → A has to
belong to S.

In other words, the sieve on A is the collection of arrows that ‘end’ to
A together with all the ‘predecessors’ of them. Note that, in the definition,
we don’t need all the arrows with codomain A. And this allows us to have
different sieves on the same object A.

For example, the maximal sieve, by definition, contains all the arrows
with codomain A, while the empty sieve contains no arrows. A ‘generic’,
mid sieve will contains some of those arrows, while others can be excluded;

f3

!!B
BB

BB
BB

B

// V ′′
f2
//
f21

++
V ′

f1
// V??���������

V ′′′

=={{{{{{{{

we can start collecting the arrows of the sieve S, either from V ′ and back-
wards, or e.g. from V ′′ an backwards. Each choice gives a different sieve.

10originally in C. Isham’s and J. Butterfield’s work



Chapter 7

Quantum Topos II: the
representation of L(S)

7.1 Introduction

In the previous chapter we examined a way of representing the propositional
language into an appropriate topos; the ‘quantum topos’ SetsV(H)op .

Let us first recapitulate some of the basic steps, done so far. The main
difference (if not the only!) between the two, classical and quantum case,
is that the propositions-letters (or symbols) of the language PL(S) are now
(in the quantum case) projection operators P̂ ≡ E[A ∈ ∆]. We used -as
an intermediate step- that quantum propositions correspond to projection
operators P̂ in H; a fact that follows from the spectral theorem1. Using
daseinisation we represented the quantum propositions in the, familiar, topos
SetsV(H)op , and more precisely, into the clopen sub-objects of the spectral
presheaf Σ. The algebra that those sub-objects form turns to be Heyting
algebra. So, by putting all these together, we obtained a representation of
PL(S) - for a system S, in the theory-type ‘quantum-physics’ - into a Heyting
algebra.

But, so far we have said nothing about physical quantities and moreover
the state2 and the quantity-value objects; the “space” that the states of the

1Actually the identification of propositions ‘A ∈ ∆’ with projections P̂ = Ê[A ∈ ∆] is
what one does in ordinary Birkhoff-von Neumann quantum logic, and this identification
is possible because of the spectral theorem.

2Of course the spectral presheaf Σ plays the role of the state-object in SetsV(H)op

.
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system live in and the values that physical quantities obtain, respectively.
The skeptical reader will have guessed that we aspire to change the lan-

guage used. Our intention is to add more (ground-type) symbols to the
language and so ‘upgrade’ it into a more powerful one. In other words we
want to switch from the propositional language PL(S) to a local language
L(S). But we have to keep in mind that this is not a trivial step to do.
By adding more and more ground-type symbols in a language one risks its
‘strength’; too many symbols could weaken it and limit down its applicability.
However with the right choice of symbols a much more powerful language is
possible.

So, again we face the problem of ‘how much information’ to put into
our language or just let the entities of interest lie in the representation.
Secondly, one has to choose an appropriate form of representation, which
could well be other than SetsC

op

. However we keep working in the topos of
presheaves SetsV(H)op . This is actually the problem, discussed again, when
we first introduced the local language L(S). The answer lies in our general
conviction that the physical quantities can be of the form

A : Σ→ R

namely represented as an arrow between an object Σ (identified as the state
‘space’) and an object R (identified as the quantity-value ‘space’).

That scheme, that works so fine in classical physics, is not only abandoned
in the quantum case3, but can well serve as a bottom-line for our construction.
Hence we are looking for ground-type symbols according to that scheme
i.e.,linguistic precursors of Σ and R objects and A arrows. In fact, our
confidence in that scheme, is so strong that will lead us to accept that the
‘space’ of values for the physical quantities is no longer the set of the real
numbers! This is not so surprising, since the quantity-value object R has to
be an object in SetsV(H)op and hence a presheaf itself.

For a symbol Σφ, that can be construed as the linguistic precursor of
the state object Σ we do not have to go far; we just pick up the spectral
presheaf Σ that worked fine in the previous construction; the ‘success’ of it is
guaranteed from the fact that the Kochen-Specker theorem can be rephrased

However this entity was not due to a representation of a linguistic precursor; it shown up
as an external object

3The reader should keep in mind that in ordinary quantum-mechanical framework it is
the Kochen-Specker theorem that asserts the lack of a, classically conceived, phase space



7.2. AN IMPORTANT STEP 77

in it, in compact way. So the, newly-added, ground-type symbol Σφ should
be represented in the spectral presheaf Σ.

In a similar way we define ground-type symbols Rφ and Aφ which serve as
the linguistic precursors of the quantity value object and the arrows-natural
transformations between presheaves, which represent physical quantities.

However it is not easy to work out technically, this simple concept. As
we shall see there occur more than one quantity value objects, which are not
the set of real numbers. Last, we need not add a symbol Oφ in the language
L(S), as a precursor of the outer presheaf O, since no fundamental physical
role is associated to that presheaf.

After that introductory part we are ready to begin with some technical
and useful definitions.

7.2 An important step

First we give some definitions in connection with the previous chapter. If P̂
is a projection operator and V ∈ Ob(V(H)) is a context (or stage) we define

Definition 14 The outer daseinisation operation is

δo(P̂ )V :=
∧
{Q̂ ∈ P(V )|Q̂ � P̂} (7.1)

.

In a similar way,

Definition 15 The inner daseinisation operation is

δi(P̂ )V :=
∨
{Q̂ ∈ P(V )|Q̂ � P̂} (7.2)

where ‘�, �’ denote the usual ordering of projection operators and where
P(V ) is the set of all projection operators in V .

So, with δo(P̂ )V (respectively δi(P̂ )), we can approximate the projection
operator P̂ from above (below), being the smallest (larger) projection in V
that is larger (smaller) than or equal to P̂ . The context V , in general, does
not contain P̂ , but if P̂ ∈ V then we get δo(P̂ )V = δi(P̂ )V = P̂ .
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Now with those two definitions we can construct an outer presheaf

O : V(H)→ Sets

and a inner presheaf

I : V(H)→ Sets

(exactly as we did in the previous chapter) as follows

Definition 16 The outer presheaf O, is defined over the category V(H) by:

1. On objects V ∈ Ob(V(H)) : OV := P(V )

2. On morphisms iV ′V : V ′ ⊆ V : define O(iV ′V ) : OV → OV ′ by
O(iV ′V )(â) := δo(â)V ′, for all a ∈ P(V )

Definition 17 The inner presheaf I, is defined over the category V(H) by:

1. On objects V ∈ Ob(V(H)) : IV := P(V )

2. On morphisms iV ′V : V ′ ⊆ V : define I(iV ′V ) : IV → IV ′ by I(iV ′V )(â) :=
δi(â)V ′, for all a ∈ P(V )

In words the outer (inner) presheaf maps every subalgebra V to the set
of projections P(V ) of V and assigns an arrow between any two such sets
OV and OV ′ , V

′ → V , which is nothing more than the daseinisation δo(â)V ′
(or δi(â)V ′ respectively) which adapt the projection a ∈ P(V ) to the context
V ′.

However, the main part of this chapter is to construct the quantity value
presheaf, R and show that every physical quantity A can be represented by
an arrow between two presheaves in the topos SetsV(H)op , namely a natural
transformation Ă : Σ→ R. But before doing that we have to continue with
an important step. In the previous chapter we daseinised the projection
operators of P(V) and this was actually the critical step that allowed us to
represent the quantum logic of the lattice P(V ) to the Heyting algebra of
SubclΣ. Now and since physical quantities, in Quantum Physics, are being
represented by self-adjoint operators it is natural to move on the daseinisation
of them.
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Daseinisation of a self-adjoint operator A formula, about the daseini-
sation of self-adjoint operators Â, that one -naturally- expects to work easily,
is to daseinise the spectral projections of Â. In other words expand Â into

Â =
∞∑
i=1

aiPi

and then daseinise

δo(Â)V :=
∞∑
i=1

aiδ
o(Pi)V

Unfortunately, it turns out that this procedure does not work. On one hand
this formula holds only for a discrete spectrum and it is quite hard to gen-
eralise that in the case of a continuous spectrum. On the other hand, the
collection of daseinised projections δo(P̂i)V , i = 1, 2 . . . , in general do not
form a complete orthonormal set, i.e., one of the relations

∞∑
i=1

δo(P̂i)V = 1̂ (7.3)

δo(P̂i)V δ
o(P̂j)V = δijP̂i (7.4)

(where δ on the right hand side of 7.4 is the usual Kronecker-δ and no sum-
mation over i-indices is invoked) will not hold true.

If, instead of the spectral projections, we daseinise the spectral families
we can overcome the above difficulty. This realization is due to de Groote’s
work.

A formal definition of spectrum, spectral families and the spectral theorem
can be found in the appendix. In words, the spectral theorem associates a
spectral family to each self-adjoint operator Â and inversely, for every spectral
family it defines a self-adjoint operator. Now, using that theorem we can get
the desired result, namely to daseinise self-adjoint operators.

Definition 18 Let Â be an arbitrary self-adjoint operator. Then the outer
and inner daseinisations of Â are defined at each stage V as:

δo(Â) :=

∫
IR

λd(δiV (ÊA
λ )), (7.5)

δi(Â) :=

∫
IR

λd(
∧
µ>λ

δoV (ÊA
µ )), (7.6)

respectively
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where λ→ Êλ is a spectral family in P(H).4

In such a way, admittedly a slightly more technical one, we succeed for the
self-adjoint operators what we have already done for the projections; namely
an ‘approximation’ for the operator Â from within the contexts V , that do
not contain Â. In the case where Â ∈ V we get δi(Â)V = δo(Â)V = Â, just
as in the daseinisation of projections.

Moreover, can shows that the daseinisation procedure (both inner and
outer) can be extended to the case that V does not belong to the set B(H)
of all bounded operators in H or V is not an abelian subalgebra of B(H).

7.3 The Presheaf IR�

As pointed in the introduction, our aim is to construct a ‘quantity-value’
presheaf R In other words we need an object (presheaf) R such that an
an arrow from the spectral presheaf Σ to it, will be associated to the phys-
ical quantities A, i.e., self-adjoint operators. An arrow between any two
presheaves cannot be other than a natural transformation and the way we
connect it to the self-adjoint operators is not other than the inner and outer
daseinisations.

7.3.1 The failure of the real-number object

The arrow corresponding to a self-adjoint operator Â ∈ B(H) is denoted by
Ă : Σ→ R. The mapping we are looking for, is of the form

ĂV : ΣV → RV (7.7)

λ 7→ ĂV (λ) (7.8)

here, λ ∈ ΣV is a multiplicative linear functional

λ→ |C, with λ(1̂) = 1,

4Note here that for all λ ∈ IR and for all stages V we have

δi(Êλ)V �
∧
µ>λ

δo(Êp)V

and hence, for all V , δi(Â)V � δo(Â)V . This explains why the ‘i’ and ‘o’ superscripts in
the inner and outer daseinisation are define as they are.
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called a spectral element of V. So λ must be evaluated on operators lying in
V. This is not a problem, since the daseinisations δi(Â)V and δo(Â)V lie in
V, even if Â themselves do not.

Furthermore from the spectral theorem we know that there is a mapping
for every self-adjoint operator Â5 , from the spectral presheaf to the spectrum
sp(δo(Â)V ) of the operator δo(Â)V . This function6

fδo(Â)V
: ΣV → sp(δo(Â)V ) (7.9)

represents the self-adjoint operator δo(Â)V , of the commutative von Neumann
algebra V and fδo(Â)V

is actually the Gel’fand transform of the daseinisation

of Â. To simplify the notation we denote Âδ the (outer) daseinised operator,
which lies in V , i.e.,

Âδ := δo(Â)V (7.10)

Now, 7.9 becomes:
fÂδ : ΣV → sp(Âδ)

λ 7→ fÂδ(λ)
(7.11)

which maps a functional λ : V → |C of ΣV to fÂδ(λ), which belongs to

the spectrum of Âδ.
Now this is a strange map, which ‘transforms a transform’ ! (the Gel’fand

transform). To see that, we note that there is ‘trick’ used at that stage:
we let the function fÂδ(λ) be equal to λ(Âδ) and hence we get:

fÂδ : ΣV → sp(Âδ)

λ 7→ λ(Âδ)
(7.12)

Going further, and since sp(Âδ) is a subset of the real numbers IR, we
can rewrite the above relation as:

fÂδ : ΣV → IR (7.13)

and so guess that is of the form 7.7 i.e., regard the collection of maps fÂδ as
an arrow from Σ to a presheaf R. This means that we regard the presheaf

5In case where Â is not self-adjoint, we can always write it as Â = Â1 + ıÂ2, where
Â1, Â2 are self-adjoint operators. The linearity of the transform λ guarantees the viability
of the transformation of the non-self-adjoint Â.

6In the original work of Döring and Isham, this function is denoted by δo(Â)V . I prefer
to use the ‘f ’-symbol to avoid a probable optical confusion with so many lines!
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R (that we are looking for) as the constant presheaf IR7. It turns out that
this not the desired formula; the family of Gel’fand transforms, fÂδ of the

daseinised operator δo(Â)V ≡ Âδ, V ∈ Ob(V(H)), cannot define an arrow
from Σ to IR. The reader who wishes to see the (technical) justification of
that, is prompted to [4], page 11.

Summarizing, we see that we cannot employ the constant presheaf as the
quantity-value object in the topos of presheaves SetsV(H)op . Thus the object
R that we are looking for is not the real-number object IR.

At first sight, this inapplicability might seem strange; what we have is a
quantum scheme for state-object and physical quantities, which do not hold
values on the reals! But, after a second thought we realize that this is not
so puzzling. In fact, if we were able to construct a real-number object we
would oppose the Kochen-Specker theorem. It this the latter that forbids the
assignment of real numbers as values of physical quantities, at least globally.

7.3.2 The object IR� and arrows for physical quantities

We are ready now to shortly introduce the quantity-value presheaf, in SetsV(H)op ,
which is described in detail in [4] and hence complete the representation of the
language L(S) in the quantum topos SetsV(H)op . We will use the presheaves
of ‘order-reversing’ and ‘order-preserving functions’ (see appendix), over the
partially order set V(H).

We consider the presheaf P�, where we use the reals IR8 for the partially
ordered set P and the usual ordering 6.

Now let Â ∈ B(H)sa, and let V ∈ Ob(V(H)). Then to each λ ∈ ΣV we
can associate the function

δ̆o(Â)V (λ) :↓ V → sp(Â)

given by (
δ̆o(Â)V (λ)

)
(V ′) := δo(Â)V ′

(
Σ(iV ′V )(λ)

)
for all V ′ ⊆ V , where δo(Â)V ′ is the fÂδ transform for the daseinisation of Â
in the subalgebra V ′.

7It is known, from general topos theory, that the real-number object, IR in SetsC
op

is
the constant functor from C to IR, i.e., every C-object is mapped to the reals.

8The set of the reals IR is a totally ordered set and hence a poset.
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Hence δo(Â)V (λ) :↓ V → sp(Â) is an order-preserving function, for each
λ ∈ ΣV . Since sp(Â) is a a subset of the reals, sp(Â) ∈ IR, we can write:

δ̆o(Â)V (λ) :↓ V → IR

The set of order-reversing functions from ↓ V to IR obtained in this way
is now denoted by:

δ̆o(Â)V : ΣV → IR� (7.14)

We can establish a theorem, which captures our previous claim; the phys-
ical quantities are represented by arrows between a state-‘space’ (the object
Σ) and a value ‘space’ 9 (the presheaf IR�).

Theorem 9 The mappings, δ̆o(Â)V , V ∈ Ob(V(H)), are the components of
a natural transformation/arrow δ̆o(Â) : Σ→ IR�.

The proof of that can be found in Döring and Isham, [4], pg 13.
More precisely, the mapping δ̆o(Â)V are arrows from the spectral presheaf

Σ to the object sp(Â)�
V

. This object is a sub-object of IR� and hence that

mapping can be also written as δ̆o(Â) : Σ→ IR�.

In such a way to each physical quantity Â there is assigned an arrow,
from the object Σ to the object IR� of SetsV(H)op . That arrow is the natural
transformation between the presheaves Σ and IR�. The technical ‘vehicle’
to succeed that is the daseinisation operation and the Gel’fand transform.
Note that this, actually, is a representation10 Aφ : Σφ → Rφ in the topos

SetsV(H)op , of the ‘function symbol’ A : Σ → R of the language L(S), that
we introduced in the beginning of this chapter.

To define the presheaf IR� and regard it as a candidate for the quantity-
value object, we used the order-reversing function δ̆o(Â)V (λ) :↓ V → IR. In
a similar way we can use the order-preserving functions

δ̆i(Â)V (λ) :↓ V → IR

to define a natural transformation

δ̆i(Â)V : Σ→ IR�

9more accurately: ‘a candidate for the quantity-value object’
10though it is not the only possible. We can well choose the presheaf IR� or IR↔ as the

quantity-value objects.
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from the spectral presheaf to the presheaf of the real-valued, order-preserving
functions on ↓ V . The components of this natural transformation are

δ̆i(Â)V : ΣV → sp(Â)�
V

λ 7→ δ̆i(Â)V (λ)

Combining the functions obtained from both inner and outer daseini-
sation, now, we can define the presheaf IR↔, of order-reversing and order-
preserving functions. The functions

δ̆(Â)V :=
(
δ̆i(Â)V (·), δ̆o(Â)V (·)

)
: ΣV → IR↔V , V ∈ Ob(V(H))

define an arrow (as components of the natural transformation)

δ̆(Â) : Σ→ IR↔.

7.4 The Grothendieck completion of the presheaf

IR�

So far we have constructed a general scheme that assigns to each physi-
cal quantity an arrow, between two (special) objects, in topos SetsV(H)op .
The presheaf R, which is not the real numbers object, plays the role of the
quantity-value object. The ‘problem’, as we saw, is that we have not one such
object, but three; namely the presheaf IR� of order-reversing, the presheaf
IR� of order-preserving and the presheaf IR↔ of both order-reversing and
order-preserving real-valued functions. Fortunately we are free to choose any
of the three presheaves to be the representation Rφ of the symbol R of the
language L(S). We choose the presheaf IR� to be the quantity-value object,
i.e., the representation of R, and hence the arrow δ̆o(Â) : Σ→ IR� to be the
representation of the function symbol A : Σ → R. However all choices are
equally good and furthermore there is a way of connecting those different
presheaves (more correctly two of them; IR� and IR↔), according to some
topological and algebraic properties of theirs. We will give here the general
idea, of how such a connection can be achieved, employing some methods
from algebraic topology.



7.4. THE GROTHENDIECK COMPLETION OF THE PRESHEAF IR�85

Such a useful mathematical method, is the Grothendieck group of a com-
mutative monoid11. In its simple form it is the universal way of making that
monoid12 S into a group k(S). Some technical details about this, can be
found in the appendix. This construction is called Grothendieck extension or
Grothendieck completion.

From the properties of the presheaf IR� follows that it is a commuta-
tive monoid in the topos SetsV(H)op . Furthermore the collection of global
elements ΓIR� of IR� has a commutative monoid structure.

On the other hand the set of real numbers IR , of standard physics, is an
abelian group under the ordinary addition of reals13. Hence it is natural to
employ the Grothendieck completion in order to extend the monoid IR� to an
abelian group. It turns out that this technique can be adapted successfully
and give as a result the presheaf k(IR�). The latter is the ‘Grothendieck
completion’ of IR�; i.e., an abelian-group object in the topos SetsV(H)op .

We will skip here the formal definition of k(IR�)14 which can be found in
[4] .

Before going on, let us clarify something. The reason why we want to
make IR� into an abelian group, is not just the recovery of the similarity of it,
to the quantity-value object of the classical physics; namely IR. It is, rather,
the establishment of some relations, necessary for the further development
of quantum physics in SetsV(H)op . For example, the relation:

∇(Â) := δ̆o(Â2)− δ̆o(Â)2 (7.15)

which can be construed as an ‘intrinsic dispersion’, is not well-defined.
Apart from the problematic square δ̆o(Â)2 of the arrow δ̆o(Â) : Σ → IR�,
nothing assures that we can subtract such arrows. This is related to the fact
that the presheaf IR� is just a monoid and hence the existence of an inverse
−ν of an element ν, where −ν, ν ∈ ΓIR�, is not guaranteed.

So, it is the need for a subtraction that compels a group-structure in IR�,
which we achieve through the Grothendieck k-extension.

11A monoid is a set that is closed under an associative binary operation and has an
identity element e ∈ S such that for all a ∈ S, e ∗ a = a ∗ e = a. Unlike a group, its
elements need not have inverses. It can also be thought of as a semigroup with an identity
element.

12S might also be an abelian semigroup
13Furthermore IR is a commutative ring.
14after all this work bristles with definitions!
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As said before the presheaf k(IR�) does exist in SetsV(H)op , as the abelian-
group object and, moreover, can be identified as a possible quantity-value
object. This means that we can assign to each bounded self-adjoint operator

Â an arrow
[
δ̆o(Â)

]
: Σ→ k(IR�).

So we now have four candidates of the quantity-value object! Well, things
can get simpler, if we regard the relation between the presheaf IR↔ of order-
preserving and order-reversing real-valued functions and k(IR�). The relation
in question is given by the isomorphism

(IR↔/ ≡) ∼= k(IR�) (7.16)

The ‘≡’ symbol denotes an equivalence relation on IR↔V , defined by

(µ1, ν1) ≡ (µ2, ν2) iff µ1 + ν1 = µ2 + ν2

for all V and global elements µ1, µ2, ν1, ν2 of the presheaf IR↔. Then IR↔/ ≡
is isomorphic to k(IR�) under the mapping

[µ, ν] 7→ [ν,−µ] ∈ k(IR�)V

for all V and all [µ, ν] ∈ (IR↔/ ≡)V .
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Conclusions

What we learnt? In this long piece of work, there were presented many,
physical and mathematical, new ideas. This whole ‘physics-in-topos’ struc-
ture, however complicated might looks, can provide us with some quite useful
concepts about how a physical theory is constructed. By introducing topos,
as a novel tool in physics, we were able to construct a general scheme, mod-
eled after the ‘properties’ of classical physics, wide enough to fit more theories
of physics; even such a weird theory as quantum physics! In other words we
took the scheme of classical physics and reformulated in the ‘language’ of
topos. This allowed us to make the appropriate generalization, in the in-
tuitionistic universe of topos, in order to restore a ‘realistic’ understanding
of quantum physics. The price we pay for that is the abandonment of the
real numbers, as the space where the physical quantities acquire their val-
ues. However this is not a discouraging result; from one hand there is not
a (well defined and clear) restriction to use the real or complex numbers,
as the quantity value space. From the other hand numerous times the use
of a non-continuous space-time background has proposed, in order to face
the difficulties of quantum gravity. Hopefully, the topos framework is wide
enough to fit in a quantum theory of gravity.

Finally and in the writer’s point of view, these are the main reasons why
the work of C. Isham and A. Döring, is remarkable; it proposes novel ideas
in both fields: conceptual and mathematical-technical.

Open problems and goals The work presented here is the first part of a
project which focuses on establishing a new way of writing theories of physics.
So far, some features of the quantum theory, such as projection operators,

87
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self-adjoint operators and operator spectra, have been described in the topos
formulation. Though there are still many aspects of quantum theory that
have to be incorporated in the general construction. Some of them are the
description of commutators within the topos SetsV(H)op , a topos formulation
of the uncertainty relations, the superposition of states, composite systems,
entaglement and an ongoing discussion on internal or external language for-
mulations.
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Chapter 9

Appendix

9.1 Axioms for CL and IL axiom systems

Let a, b and c be arbitrary sentences and the symbols ‘∧’, ‘∨’, ‘⊃’ and ‘∼’
denote conjunction, disjunction, implication and negation, respectively. The
following twelve forms

1. a ⊃ (a ∧ a)

2. (a ∧ b) ⊃ (b ∧ a)

3. (a ⊃ b) ⊃ ((a ∧ c) ⊃ (b ∧ c))

4. ((a ⊃ b) ∧ (b ⊃ c)) ⊃ (a ⊃ c)

5. b ⊃ (a ⊃ b)

6. (a ∧ (a ⊃ b)) ⊃ b

7. a ⊃ (a ∨ b)

8. (a ∨ b) ⊃ (b ∨ a)

9. ((a ⊃ c) ∧ (b ⊃ c)) ⊃ ((a ∨ b) ⊃ c)

10. ∼ a ⊃ (a ⊃ b)

11. ((a ⊃ b) ∧ (a ⊃∼ b)) ⊃∼ a

12. a ∨ ∼ a

89
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are the axioms for Classical Logic (CL) (or more generally: “the axioms
for CL comprise all sentences that are instances of the above twelve forms”,
Goldblatt, [1], p. 131.)

The axioms for Intuitionistic Logic (IL) are the forms 1-11 (i.e.,does not
contain a ∨ ∼ a).

9.2 Posets, Lattices and Presheaves

9.2.1 Pre-ordering and partial ordering

Definition 19 A relation “v” is called pre− order on a set S if it satisfies:

1. Reflexivity a v a for all a ∈ S

2. Transitivity: a v b and b v c implies a v c.

Apart from that we can define the pre-order from a categorical viewpoint.
A category with the property that between any objects p and q there is at most
one arrow p→ q, is called a pre-order (Goldblatt, [1]). If P is the collection
of objects of a pre-order category then we may define a binary relation R on
P , i.e.,a set R ⊆ P × P , by putting
< p, q > if and only if there is an arrow p→ q in the pre-order category.

Then the relation R has the following properties:

1. reflexive, i.e.,for each p we have < p, p >∈ R, and

2. transitive , i.e.,whenever < p, q >∈ R and < q, s >∈ R, we have
< p, s >∈ R

Thus a pre-order category has a natural pre-ordering relation on its collec-
tion of objects.. Conversely if we start simply with a set P that is pre-ordered
by a relation R then we can obtain a pre-order category.

Definition 20 A pre-order that also satisfies antisymmetry i.e.,:

if a v b and b v a then a = b

is called a partial order.
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A poset (or partially ordered set) P=〈P,v〉 is a set P equipped with partial-
order.

We can easily form a category C from a poset, if we regard p ∈ C as
objects and assign an arrow between p,q ipq : p → q if and only if p � q. A
simple example, given before, is the category of the subsets of a set, when
the subsets are ordered by set-inclusion. That inclusion is (i) reflexive, (ii)
transitive and (iii) anti-symmetric and hence is a partial order on that set.

9.2.2 Lattices and algebras

In a pre-order (P,v), a product p× q is defined by the properties

1. p× q v p, p× q v p, (i.e.,p× q is a “lower bound” of p and q)

2. if c v p and c v q, then c v p× q, i.e.,p× q is “greater than” any other
lower bound of p and q.

In other words p× q is a greatest lower bound (g.l.b.) of p and q. in a poset
the g.l.b. is unique, when it exists, and will be denoted p u q.

In a pre-order (P,v), p+ q is defined by the properties

1. p v p+ q, q v p+ q, (i.e.,p+ q is an “upper bound” of p and q)

2. if p v c and q v c, then p + q v c, i.e.,p+q is “less than” any other
upper bound of p and q.

In other words p+ q is a least upper bound (l.u.b) of p and q. In a poset
the l.u.b is unique when it exists, and will be denoted p t q.

Definition 21 A non-empty poset in which any two elements have a l.u.b
and a g.l.b. is called a lattice.

Categorically a lattice is a skeletal pre-order having a product (a×b) and
a co-product (a+ b) for any two of its elements.

Definition 22 Let L be a bounded lattice (with 0 and 1), and a ∈ L. A
complement of a is an element b ∈ L such that

a ∧ b = 0 and a ∨ b = 1.
An element in a bounded lattice is complemented if it has a complement.

A complemented lattice is a bounded lattice in which every element is com-
plemented.
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Definition 23 Let L be a lattice, and a, b ∈ L. Then a is said to be pseu-
docomplemented relative to b if the set T (a, b) := {c ∈ L | c ∧ a ≤ b} has a
maximal element.

The maximal element (necessarily unique) of T (a, b) is called the pseu-
docomplement of a relative to b, and is denoted by a → b. So, a → b, if
exists, has the following property c ∧ a ≤ b iff c ≤ a → b. If L has 0, then
the pseudocomplement of a relative to 0 is the pseudocomplement of a.

An element a ∈ L is said to be relatively pseudocomplemented if a → b
exists for every b ∈ L. In particular a → a exists. Since T (a, a) = L, so L
has a maximal element, or 1 ∈ L.

A lattice L is said to be relatively pseudocomplemented, or Brouwerian,
if every element in L is relatively pseudocomplemented. Evidently, as we
have just shown, every Brouwerian lattice contains 1.

Definition 24 A lattice is said to be distributive if it satisifes either (and
therefore both) of the distributive laws:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Definition 25 A Boolean algebra B is a distributive complemented lattice.

Definition 26 A Heyting algebra H is a relatively pseudocomplemented lat-
tice with a zero element 0.

9.2.3 Presheaves and sieves

Definition 27 A Presheaf X is a function on a poset C that assigns to each
p ∈ C a set Xp and to each pair ipq : p→ q a map Xpq : Xq → Xp such that

1. Xpp : Xp → Xp is the identity map idXp
on Xp and

2. Whenever p � q � r the composite map X
Xrq−→Xq

Xqp−→Xp is equal to
Xr

Xrp−→Xp, so that Xrp = Xqp ◦Xrq

Equivalently, a Presheaf on a poset C is a contravariant functor X from
the category C to the category Sets of normal sets.

We have defined what a sieve is in previous chapter. In the case where C
is a poset, a sieve on p ∈ C is any subset S of C such that if r ∈ S then
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1. r � q and

2. r′ ∈ S for all r′ � r.

In other words a Sieve is lower set in a poset.

9.2.4 Functions between posets

Definition 28 Let (Q,�) and Let (P ,�) be partially ordered sets. A func-
tion

µ : Q → P
is order-preserving if q1 � q2 implies µ(q1) � µ(q2) for all q1, q2 ∈ Q. It is
order-reversing if q1 � q2 implies µ(q1) � µ(q2). We denote by OP(Q,P)
the set of order-preserving functions µ : Q → P, and by OR(Q,P) the set
of order-reversing functions.

Furthermore if P is any poset we can define the following presheaf:

Definition 29 The P-valued presheaf, P�, of order-reversing functions over
V(H) is defined as follows:

• On objects V ∈ Ob(V(H)):

P�V := {µ :↓ V → P | µ ∈ OR(↓ V,P)}

where ↓ V ⊂ Ob(V(H)) is the set of all unital von Neumann subalgebras
of V.

• On morphisms iV ′V : V ′ ⊆ V : The mapping P�(iV ′V ) : P�V → P�V ′
is given by

P�(iV ′V )(µ) := µ|V ′

where µ|V ′ denotes the restriction of the function µ to ↓ V ′ ⊆↓ V .

In words, the P-valued presheaf P�V is a presheaf (and hence a functor
from a category C to Sets) that assigns to each V(H)-object the set of all
functions µ from the object (poset) ↓ V to the poset P and reverses the order
of the ordering.

There is an analogous definition of the P-valued presheaf, P�, of order-
preserving functions from ↓ V to P . It can be shown that P� and P� are
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isomorphic objects in SetsV(H)op .

Furthermore we can define a presheaf that combines both order-preserving
and order-reversing functions, as follows:

Definition 30 The P-valued presheaf, P↔, of order-preserving and order-
reversing functions over V(H) is the presheaf acting:

• On objects V ∈ Ob(V(H)):

P↔V := {(µ, ν) | µ ∈ OP(↓ V,P), ν ∈ OR(↓ V,P)},

where ↓ V ⊂ Ob(V(H)) is the set of all unital von Neumann subalgebras
of V.

• On morphisms iV ′V : V ′ ⊆ V :

P↔(iV ′V ) : P↔V → P↔V ′

(µ, ν) 7→ (µ|V ′ , ν|V ′)

where µ|V ′ denotes the restriction of the function µ to ↓ V ′ ⊆↓ V and
analogously for ν|V ′.

9.3 Borel sets and algebra

The Lebesgue measure is an extension of the classical notions of length and
area to more complicated sets.

Definition 31 Given an open set S ≡
∑

k(ak, bk) containing disjoint inter-
vals, the Lebesgue Measure is defined by

µL(S) :=
∑
k

(bk − ak)

Given a closed set S ′ ≡ [a, b]− S

µL(S ′) := (b− a)−
∑
k

(bk − ak)
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For example, a unit line element has Lebesgue measure 1; the Cantor set has
Lebesgue measure 0. The Minkowski measure of a bounded closed set is the
same as its Lebesgue measure.

Definition 32 A Borel σ-Algebra on a topological space X is a σ-algebra of
subsets of X associated to the topology of X.

The Borel σ-algebra is defined to be the minimal σ-algebra containing the
open sets. However sometimes is defined as the minimal σ-algebra containing
the compact sets).

Definition 33 A Borel set X is an element of a Borel σ-algebra. A Borel
subset is a subset of the Borel set X.

Roughly speaking, Borel sets are the sets that can be constructed from open
or closed sets by repeatedly taking countable unions and intersections. For-
mally, the class B of Borel sets in Euclidean IRn is the smallest collection of
sets that includes the open and closed sets such that if E,E1, E2, . . . are in
B, then so are

⋃∞
i=1Ei,

⋂∞
i=1 Ei and IRn\E, where F\E is the set difference.

Examples of Borel sets are the set of rational numbers Q, the Cantor set
and others.

9.4 C∗- and Von Neumann algebras

Definition 34 A Banach space (X, ‖ · ‖) is a normed vector space such that
X is complete under the metric induced by the norm ‖ · ‖

Hilbert spaces with their norm given by the inner product are examples of
Banach spaces. While a Hilbert space is always a Banach space, the converse
need not hold.

Joke 1 If a space (X, ‖ · ‖) is normed, complete and yellow, then it is a
Bananach space.

Definition 35 An algebra u (over IR or |C) with unit I is said to be a
normed algebra when u is a normed space such that ‖AB‖ 6 ‖A‖ · ‖B‖ for
all A and B in u and ‖I‖ = 1. If u is a Banach space relative to this norm,
u is said to be a Banach algebra.
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Definition 36 A C∗-algebra A is a complex Banach algebra u (with a unit
element I) that ‖a∗a‖ = ‖a‖2 for all a ∈ u

Let H be an Hilbert Space, B(H) the algebra of bounded operators in H
and F ⊂ B(H). Then,

Definition 37 The commutant of F , usually denoted F ′, is the subset of
B(H) consisting of all elements that commute with every element of F , that
is F ′ = {T ∈ B(H) : T · S = S · T ∀S ∈ F}

The double commutant of F is just (F ′)′ and is usually denoted F ′′.

Definition 38 A von Neumann algebra (or W ∗-algebra)M is a C∗-subalgebra
of B(H) that contains the identity operator and satisfies the following condi-
tion:
M =M′′, i.e. M equals its double commutant.

Examples:
1. B(H) is itself a von Neumann algebra.
2. L∞(R) as subalgebra of B(L2(R)) is a von Neumann algebra.

9.5 Spectral Theorem

9.5.1 Spectrum

Definition 39 If A is an element of a Banach algebra u, we say that a
complex number λ is a spectral value for A (relative to u) when A−λI does
not have a two-sided inverse in u. The set of spectral values of A is called
the spectrum of A and denoted by spu(A).

Theorem 10 λ is a spectral value of A if and only if λ − µ is a spectral
value of A− µI.

Proof Note that A − λI = (A − µI) − (λI − µI) = (A − µI) − (λ − µ)I
and thus A− λI is invertible if and only if (A− µI)− (λ− µ)I is invertible.
Equivalently, λ is a spectral value of A if and only if λ−µ is a spectral value
of (A− µI), as desired.
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9.5.2 Spectral Projections

Let A0 be an abelian von Neumann algebra, generated by a normal op-
erator A acting on a Hilbert space H, S a Borel subset of |C and g the
characteristic function of S. Then the projection E(S) = g(A) is a spectral
projection for A corresponding to the Borel subset S of |C.

In the case where the spectrum of Â is discrete we have:

Â :=
∞∑
i=1

aiP̂i, where ai ∈ sp(Â)

9.5.3 Spectral families

Definition 40 A spectral family is a family of projection operators Êλ, λ ∈
IR with the following properties:

1. If λ2 6 λ1 then Êλ2 � Êλ1

2. The net λ 7→ Êλ of projection operators in the lattice P(H) is bounded
above by 1̂ and below by 0̂. In fact

limλ→∞Êλ = 1̂

limλ→−∞Êλ = 0̂

3. The map λ 7→ Êλ is right continuous:∧
ε|0

Êλ+1 = Êλ

for all λ ∈ IR.

9.5.4 Spectral Theorem

Definition 41 Let H be a Hilbert space, B(H) the set of bounded linear op-
erators from H to itself, T an operator on H, and σ(T ) the operator spectrum
of T . Then if T ∈ B(H) and T is normal, there exists a unique resolution of
the identity E in the Borel Subsets of σ(T ) which satisfies

T =

∫
σ(T )

λdE(λ) (9.1)

furthermore, every projection E(ω) commutes with every S ∈ B(H) that
commutes with T .
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9.6 Gel’fand Transform

The Gelfand transform is a very useful tool in the study of commutative
Banach algebras and, particularly, C∗-algebras.

Let A be a Banach algebra over C. Let Λ be the space of all multiplicative
linear functionals in A, in the senses:

λ(ax+ by) = aλ(x) + bλ(y) and λ(xy) = λ(x)λ(y).

Let C(Λ) denote the algebra of complex valued continuous functions in Λ.

Definition 42 The Gelfand transform is the mapping

̂ : A −→ C(Λ)

x 7−→ x̂

where x̂ ∈ C(Λ) is defined by x̂(λ) := λ(x), ∀λ ∈ Λ

The Gelfand transform is a continuous homomorphism from A to C(Λ)
and is automatically bounded.

For example, if A = L1(R) with the usual norm, then A is a Banach al-
gebra under convolution and the Gelfand transform is the Fourier transform.

9.7 Clopen sets

Definition 43 A clopen set is a set which is both open and closed

In any topological space X, the empty set and the whole space X are
both clopen.

Now consider the space X which consists of the union of the two intervals
[0,1] and [2,3]. The topology on X is inherited as the subspace topology from
the ordinary topology on the real line IR. In X, the set [0,1] is clopen, as is
the set [2,3]. This is a quite typical example: whenever a space is made up of
a finite number of disjoint connected components in this way, the components
will be clopen.

As a less trivial example, consider the space Q of all rational numbers
with their ordinary topology, and the set A of all positive rational numbers
whose square is bigger than 2. Using the fact that

√
2 is not in Q, one can

show quite easily that A is a clopen subset ofQ. (Note also that A is not a
clopen subset of the real line IR; it is neither open nor closed in IR.)
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9.8 Kochen-Specker Theorem

Let H be a Hilbert space, B(H) the set of all bounded self-adjoint operators
Â in H. Then

Theorem 11 if the dimension of H is greater than 2, then, there, does not
exist any valuation function VΨ : B(H) → IR from B(H) to the reals such
that, the functional composition principle is satisfied for all Â ∈ B(H) and
all Ψ ∈ H.

9.9 Proofs of lemmas of section 6.5.3.

Proof of lemma 6 As usual, we identify an inclusion morphism iV ′V
with V ′ itself, so a sieve on V consists of certain subalgebras of V . We have
to show that if V ′ ∈ v(pSq ∈ Tψ)V and V ′′ ⊂ V ′, then V ′′ ∈ v(S ∈ Tψ)V .
Now, V ′ ∈ v(pSq ∈ Tψ)V means that S(V ′) ∈ Tψ

V ′ , which is eqivalent to
S(V ′) ⊇ Sδo( bPψ)V ′

. Here, Sδo( bPψ)V ′
is the component at V ′ of the sub-object

Sδo( bPψ) = (Sδo( bPψ)V
)V ∈V(H) of Σ obtained from daseinisation of P̂ψ. We know

that the sub-object Sδo( bPψ) is optimal in the following sense: when restricting

from V ′ to V ′′, we have Σ(iV ′′V ′)(Sδo( bPψ)V ′
) = Sδo( bPψ)V ′′

,1 i.e., the restriction

is surjective. By assumption, S(V ′) ⊇ Sδo( bPψ)V ′
, which implies

S(V ′′) ⊇ Σ(iV ′′V ′)(S(V ′)) ⊇ Σ(iV ′′V ′)(Sδo( bPψ)V ′
) = Sδo( bPψ)V ′′

.2

This shows that V ′′ ∈ Tψ
V ′′ and hence V ′′ ∈ v(pSq ∈ Tψ)V .

Proof of lemma 7 By definition, the pullback σ · iV ′V is given by

σ · iV ′V := {iV ′′V ′ | iV ′V ◦ iV ′′V ′ ∈ σ}.

We now identify morphisms and subalgebras as usual and obtain (using the
fact that V ′′ ⊆ V ′ implies V ′′ ⊂ V )

{iV ′′V ′ | iV ′V ◦ iV ′′V ′ ∈ σ} ' {V ′′ ⊆ V ′ | V ′′ ∈ σ} =↓V ′ ∩ σ.
1Note the equality here. For a sub-object an inclusion ‘⊇’ would be enough
2The equality, in the last step of the proof, is important; for if it was an inclusion ‘⊆’

we would not be able to obtain the desirable result!
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9.10 Grothendieck group construction

In its simplest form, the Grothendieck group of a commutative monoid is the
universal way of making that monoid into an abelian group.

Let S be an abelian monoid. The Grothendieck group of S is k(S) =
S × S/∼, where ∼ is the equivalence relation: [s, t] ∼ [u, v] if there exists
r ∈ S such that s+ v + r = t+ u+ r. This is indeed an abelian group with
identity element [s, s] (any s ∈ S) and inverse −[s, t] = [t, s]. It is common
to use the suggestive notation t− s for [t, s].

Now, the Grothendieck group k(S) of a commutative monoid S has the
following property:
There exists a monoid homomorphism

r : S → k(S)

such that for any monoid homomorphism

f : S → k(T )

from the commutative monoid S to an abelian group k(T ), there is a
unique group homomorphism

g : k(S)→ k(T )

such that the diagram

S
r //

f   B
BB

BB
BB

B k(S)

g

��
k(T )

i.e., f = g ◦ r
The Grothendieck group construction, in the language of Category theory,

is a functor3 r from the category of abelian monoids S to the category of
abelian groups k(S). A morphism

h : S → R

3more precisely it is left adjoint to the forgetful functor from the category of abelian
groups to the category of commutative monoids.
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induces a morphism
k(h) : k(S)→ k(R)

which sends an element (s+, s−) ∈ k(S) to (h(s+), h(s−)) ∈ k(R)
and the diagram

S
r //

h

��

k(S)

k(h)

��
R

r′
// k(R)

commutes.
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